maayanlab_bioinformatics.plotting package¶
Submodules¶
maayanlab_bioinformatics.plotting.bridge module¶
- maayanlab_bioinformatics.plotting.bridge.bridge_plot(select: Series, weights: Series | None = None)[source]¶
Use the filter to construct a bridge plot.
import numpy as np from matplotlib import pyplot as plt from maayanlab_bioinformatics.plotting import bridge_plot x, y = bridge_plot(select) plt.plot(x, y) plt.vlines(np.argwhere(select.values)[:, 0], ymin=-1, ymax=0) plt.show()
- Parameters:
select – (pd.Series) selection of hits (i.e.
df['gene'] == 'my_target'
) in ranked orderweights – (pd.Series) optional weights for each hit in the same order
- Returns:
(Tuple[np.array, np.array]) x and y arrays ready to be plotted.
maayanlab_bioinformatics.plotting.clustergrammer module¶
- maayanlab_bioinformatics.plotting.clustergrammer.display_clustergrammer(net)[source]¶
This function displays clustergrammer in a jupyter notebook without dependencies on ipywidgets or any locally installed jupyter extensions. This is convenient for static exports, colab, and appyters.
Example:
from maayanlab_bioinformatics.plotting import display_clustergrammer from clustergrammer import Network net = Network() net.load_df(df) net.cluster() display_clustergrammer(net)
maayanlab_bioinformatics.plotting.upset module¶
- maayanlab_bioinformatics.plotting.upset.upset_from_dict_of_sets(inputs: Dict[Hashable, Set[Hashable]])[source]¶
Given a dictionary of sets, produce input ready for
upsetplot
python packageWe produce this input by computing set intersections of all relevant combinations of sets interacting with one another.
Example:
import upsetplot from maayanlab_bioinformatics.plotting import upset_from_dict_of_sets upsetplot.plot(upset_from_dict_of_sets({ 'A': {'a', 'b', 'c'}, 'B': {'b', 'c', 'd'}, 'C': {'d', 'e', 'f'}, }))
- Parameters:
inputs – (Dict[Hashable, Set[Hashable]]) Several named sets
- Returns:
(pd.DataFrame) in a form ready for
upsetplot.plot
Module contents¶
This module contains various helpers for plotting things