maayanlab_bioinformatics.enrichment package¶
Submodules¶
maayanlab_bioinformatics.enrichment.crisp module¶
- class maayanlab_bioinformatics.enrichment.crisp.FisherOverlap(pvalue: float, odds_ratio: float, n_overlap: int, overlap: Set[Hashable] | None)[source]¶
Bases:
object
- n_overlap: int¶
- odds_ratio: float¶
- overlap: Set[Hashable] | None¶
- pvalue: float¶
- maayanlab_bioinformatics.enrichment.crisp.enrich_crisp(input_signature: Dict[Hashable, Any] | Iterable[Tuple[Hashable, Any]] | Set[Hashable], background_signatures: Dict[Hashable, Dict[Hashable, Any] | Iterable[Tuple[Hashable, Any]] | Set[Hashable]] | Iterable[Tuple[Hashable, Dict[Hashable, Any] | Iterable[Tuple[Hashable, Any]] | Set[Hashable]]], n_background_entities: int, preserve_overlap: bool = False) Iterable[Tuple[Hashable, FisherOverlap]] [source]¶
Perform crisp set enrichment analysis using fisher overlap. Eriches the signature in input_signature against signatures in background_signatures.
- Parameters:
n_background_entities – should correspond to the approximate number of entities exist, in the case of Human Genes for instance this might be 21000.
- maayanlab_bioinformatics.enrichment.crisp.fisher_overlap(input_signature: Set[Hashable], background_signature: Set[Hashable], n_background_entities: int, preserve_overlap: bool = False) FisherOverlap | None [source]¶
Given input and background set, compute the overlap, fisher significance, and odds ratio. In the case of no overlap, will return None.
maayanlab_bioinformatics.enrichment.gsea2003 module¶
- maayanlab_bioinformatics.enrichment.gsea2003.GSEA2003(geneset_membership: Series, gene_difference_metric: Series)[source]¶
Implementation of algorithm described here: https://pubmed.ncbi.nlm.nih.gov/12808457/
- Parameters:
geneset_membership – (pd.Series) True if in set, False if not, index: all genes
gene_difference_metric – (pd.Series) Difference metric between two classes, e.g. SNR difference
:return (Tuple[np.array, np.array]) x and y arrays ready to be plotted. ES = y.max()
maayanlab_bioinformatics.enrichment.gsea2005 module¶
- maayanlab_bioinformatics.enrichment.gsea2005.GSEA2005(geneset_membership: Series, correlations: Series)[source]¶
Implementation of algorithm described here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239896/
- Parameters:
geneset_membership – (pd.Series) True if in set, False if not, index: all genes
correlations – (pd.Series) Correlation of a given gene
:return (Tuple[np.array, np.array]) x and y arrays ready to be plotted. ES = y.max()
Module contents¶
This module contains functions that perform enrichment analysis.