{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Benchmarking the Recovery of Known Drug Targets from L1000 CRISPR KO Data: NR1I2 Version" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import plotly.graph_objects as go\n", "from IPython.display import display, Markdown\n", "import json\n", "import requests\n", "import time\n", "from random import sample\n", "from math import log2\n", "from maayanlab_bioinformatics.dge import characteristic_direction, limma_voom\n", "from maayanlab_bioinformatics.plotting.bridge import bridge_plot\n", "from maayanlab_bioinformatics.enrichment.crisp import enrich_crisp\n", "from pydeseq2.dds import DeseqDataSet\n", "from pydeseq2.ds import DeseqStats\n", "import matplotlib.pyplot as plt\n", "from os.path import exists\n", "from scipy.stats import ttest_ind, ranksums\n", "import h5py" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings('ignore')" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Load in Data" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Set KO gene\n", "ko_gene = 'NR1I2'\n", "\n", "# Set working directory\n", "l1000_data_dir = '../L1000_data'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96H_X1_B35:F08XPR010_A375.311_96H_X2_B35:F08XPR010_A375.311_96H_X3_B35:F08XPR010_A375.311_96H_X1_B35:F24XPR010_A375.311_96H_X2_B35:F24XPR010_A375.311_96H_X3_B35:F24XPR010_A549.311_96H_X1.L2_B36:F08XPR010_A549.311_96H_X3_B35:F08XPR010_A549.311_96H_X1.L2_B36:F24XPR010_A549.311_96H_X3_B35:F24...XPR010_U251MG.311_96H_X3_B35:F08XPR010_U251MG.311_96H_X1_B35:F24XPR010_U251MG.311_96H_X2_B35:F24XPR010_U251MG.311_96H_X3_B35:F24XPR010_YAPC.311_96H_X1_B35:F08XPR010_YAPC.311_96H_X2_B35:F08XPR010_YAPC.311_96H_X3_B35:F08XPR010_YAPC.311_96H_X1_B35:F24XPR010_YAPC.311_96H_X2_B35:F24XPR010_YAPC.311_96H_X3_B35:F24
symbol
DDR16.1584506.2022006.2856506.2495006.0711006.2255756.033406.263106.292856.52600...6.410306.84496.6989006.505806.5530507.5495756.846306.7804256.9518756.821550
PAX86.0117756.1062005.6649005.6657505.4719505.7806004.992255.300804.624104.82470...5.230204.50785.1270005.005605.4455255.1536004.259305.0352504.9375504.004100
GUCA1A4.8354004.9381754.8424004.6977254.8726504.8264505.216205.171454.993705.02665...4.892954.76724.8065004.921655.2905005.6226005.891555.5743505.2088005.685100
EPHB36.6325006.9714006.5743006.7536506.4275506.7698008.296507.510507.673208.04430...8.034808.95097.9903007.938807.6752507.3968506.478657.8331507.9672007.705101
ESRRA7.8197007.8589008.4977258.2729008.0563517.8913008.736308.281708.842408.22250...7.253006.85917.1230017.136308.6130508.4407507.941308.8991518.5617508.045325
\n", "

5 rows × 57 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H_X1_B35:F08 XPR010_A375.311_96H_X2_B35:F08 \\\n", "symbol \n", "DDR1 6.158450 6.202200 \n", "PAX8 6.011775 6.106200 \n", "GUCA1A 4.835400 4.938175 \n", "EPHB3 6.632500 6.971400 \n", "ESRRA 7.819700 7.858900 \n", "\n", " XPR010_A375.311_96H_X3_B35:F08 XPR010_A375.311_96H_X1_B35:F24 \\\n", "symbol \n", "DDR1 6.285650 6.249500 \n", "PAX8 5.664900 5.665750 \n", "GUCA1A 4.842400 4.697725 \n", "EPHB3 6.574300 6.753650 \n", "ESRRA 8.497725 8.272900 \n", "\n", " XPR010_A375.311_96H_X2_B35:F24 XPR010_A375.311_96H_X3_B35:F24 \\\n", "symbol \n", "DDR1 6.071100 6.225575 \n", "PAX8 5.471950 5.780600 \n", "GUCA1A 4.872650 4.826450 \n", "EPHB3 6.427550 6.769800 \n", "ESRRA 8.056351 7.891300 \n", "\n", " XPR010_A549.311_96H_X1.L2_B36:F08 XPR010_A549.311_96H_X3_B35:F08 \\\n", "symbol \n", "DDR1 6.03340 6.26310 \n", "PAX8 4.99225 5.30080 \n", "GUCA1A 5.21620 5.17145 \n", "EPHB3 8.29650 7.51050 \n", "ESRRA 8.73630 8.28170 \n", "\n", " XPR010_A549.311_96H_X1.L2_B36:F24 XPR010_A549.311_96H_X3_B35:F24 \\\n", "symbol \n", "DDR1 6.29285 6.52600 \n", "PAX8 4.62410 4.82470 \n", "GUCA1A 4.99370 5.02665 \n", "EPHB3 7.67320 8.04430 \n", "ESRRA 8.84240 8.22250 \n", "\n", " ... XPR010_U251MG.311_96H_X3_B35:F08 \\\n", "symbol ... \n", "DDR1 ... 6.41030 \n", "PAX8 ... 5.23020 \n", "GUCA1A ... 4.89295 \n", "EPHB3 ... 8.03480 \n", "ESRRA ... 7.25300 \n", "\n", " XPR010_U251MG.311_96H_X1_B35:F24 XPR010_U251MG.311_96H_X2_B35:F24 \\\n", "symbol \n", "DDR1 6.8449 6.698900 \n", "PAX8 4.5078 5.127000 \n", "GUCA1A 4.7672 4.806500 \n", "EPHB3 8.9509 7.990300 \n", "ESRRA 6.8591 7.123001 \n", "\n", " XPR010_U251MG.311_96H_X3_B35:F24 XPR010_YAPC.311_96H_X1_B35:F08 \\\n", "symbol \n", "DDR1 6.50580 6.553050 \n", "PAX8 5.00560 5.445525 \n", "GUCA1A 4.92165 5.290500 \n", "EPHB3 7.93880 7.675250 \n", "ESRRA 7.13630 8.613050 \n", "\n", " XPR010_YAPC.311_96H_X2_B35:F08 XPR010_YAPC.311_96H_X3_B35:F08 \\\n", "symbol \n", "DDR1 7.549575 6.84630 \n", "PAX8 5.153600 4.25930 \n", "GUCA1A 5.622600 5.89155 \n", "EPHB3 7.396850 6.47865 \n", "ESRRA 8.440750 7.94130 \n", "\n", " XPR010_YAPC.311_96H_X1_B35:F24 XPR010_YAPC.311_96H_X2_B35:F24 \\\n", "symbol \n", "DDR1 6.780425 6.951875 \n", "PAX8 5.035250 4.937550 \n", "GUCA1A 5.574350 5.208800 \n", "EPHB3 7.833150 7.967200 \n", "ESRRA 8.899151 8.561750 \n", "\n", " XPR010_YAPC.311_96H_X3_B35:F24 \n", "symbol \n", "DDR1 6.821550 \n", "PAX8 4.004100 \n", "GUCA1A 5.685100 \n", "EPHB3 7.705101 \n", "ESRRA 8.045325 \n", "\n", "[5 rows x 57 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "try: \n", " expr_df = pd.read_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_fulldata.tsv\", sep='\\t', index_col=0)\n", "except: \n", " l1000_data_df = pd.read_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_data.tsv\", sep='\\t')\n", "\n", " l1000_data_list = []\n", " l1000_meta_list = []\n", " for row in l1000_data_df.itertuples(): \n", " try:\n", " temp_df = pd.read_csv(row.persistent_id, sep='\\t', index_col=0)\n", " except:\n", " print(f\"Unable to access data from row {row.Index} at {row.persistent_id}\")\n", " continue\n", " for col in temp_df.columns:\n", " l1000_meta_list.append([col] + l1000_data_df.loc[row.Index].tolist())\n", " l1000_data_list.append(temp_df)\n", " expr_df = pd.concat(l1000_data_list, axis=1)\n", "\n", "expr_df.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File at '../L1000_data/NR1I2_L1000_CRISPRKO_fulldata.tsv' already exists!\n" ] } ], "source": [ "if not exists(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_fulldata.tsv\"): \n", " expr_df.to_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_fulldata.tsv\", sep='\\t', index=True)\n", "else: \n", " print(f\"File at '{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_fulldata.tsv' already exists!\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tissuediseasecell_linepert_namepert_timepert_typedata_levelcreation_timepersistent_idpert_dosebatch
id
XPR010_A375.311_96H_X1_B35:F08skin of bodymelanomaA375.311NR1I296 hCRISPR Knockout32021-01-21https://lincs-dcic.s3.amazonaws.com/LINCS-data...NaNXPR010_A375.311_96H
XPR010_A375.311_96H_X2_B35:F08skin of bodymelanomaA375.311NR1I296 hCRISPR Knockout32021-01-21https://lincs-dcic.s3.amazonaws.com/LINCS-data...NaNXPR010_A375.311_96H
XPR010_A375.311_96H_X3_B35:F08skin of bodymelanomaA375.311NR1I296 hCRISPR Knockout32021-01-21https://lincs-dcic.s3.amazonaws.com/LINCS-data...NaNXPR010_A375.311_96H
XPR010_A375.311_96H_X1_B35:F24skin of bodymelanomaA375.311NR1I296 hCRISPR Knockout32021-01-21https://lincs-dcic.s3.amazonaws.com/LINCS-data...NaNXPR010_A375.311_96H
XPR010_A375.311_96H_X2_B35:F24skin of bodymelanomaA375.311NR1I296 hCRISPR Knockout32021-01-21https://lincs-dcic.s3.amazonaws.com/LINCS-data...NaNXPR010_A375.311_96H
\n", "
" ], "text/plain": [ " tissue disease cell_line pert_name \\\n", "id \n", "XPR010_A375.311_96H_X1_B35:F08 skin of body melanoma A375.311 NR1I2 \n", "XPR010_A375.311_96H_X2_B35:F08 skin of body melanoma A375.311 NR1I2 \n", "XPR010_A375.311_96H_X3_B35:F08 skin of body melanoma A375.311 NR1I2 \n", "XPR010_A375.311_96H_X1_B35:F24 skin of body melanoma A375.311 NR1I2 \n", "XPR010_A375.311_96H_X2_B35:F24 skin of body melanoma A375.311 NR1I2 \n", "\n", " pert_time pert_type data_level \\\n", "id \n", "XPR010_A375.311_96H_X1_B35:F08 96 h CRISPR Knockout 3 \n", "XPR010_A375.311_96H_X2_B35:F08 96 h CRISPR Knockout 3 \n", "XPR010_A375.311_96H_X3_B35:F08 96 h CRISPR Knockout 3 \n", "XPR010_A375.311_96H_X1_B35:F24 96 h CRISPR Knockout 3 \n", "XPR010_A375.311_96H_X2_B35:F24 96 h CRISPR Knockout 3 \n", "\n", " creation_time \\\n", "id \n", "XPR010_A375.311_96H_X1_B35:F08 2021-01-21 \n", "XPR010_A375.311_96H_X2_B35:F08 2021-01-21 \n", "XPR010_A375.311_96H_X3_B35:F08 2021-01-21 \n", "XPR010_A375.311_96H_X1_B35:F24 2021-01-21 \n", "XPR010_A375.311_96H_X2_B35:F24 2021-01-21 \n", "\n", " persistent_id \\\n", "id \n", "XPR010_A375.311_96H_X1_B35:F08 https://lincs-dcic.s3.amazonaws.com/LINCS-data... \n", "XPR010_A375.311_96H_X2_B35:F08 https://lincs-dcic.s3.amazonaws.com/LINCS-data... \n", "XPR010_A375.311_96H_X3_B35:F08 https://lincs-dcic.s3.amazonaws.com/LINCS-data... \n", "XPR010_A375.311_96H_X1_B35:F24 https://lincs-dcic.s3.amazonaws.com/LINCS-data... \n", "XPR010_A375.311_96H_X2_B35:F24 https://lincs-dcic.s3.amazonaws.com/LINCS-data... \n", "\n", " pert_dose batch \n", "id \n", "XPR010_A375.311_96H_X1_B35:F08 NaN XPR010_A375.311_96H \n", "XPR010_A375.311_96H_X2_B35:F08 NaN XPR010_A375.311_96H \n", "XPR010_A375.311_96H_X3_B35:F08 NaN XPR010_A375.311_96H \n", "XPR010_A375.311_96H_X1_B35:F24 NaN XPR010_A375.311_96H \n", "XPR010_A375.311_96H_X2_B35:F24 NaN XPR010_A375.311_96H " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "try: \n", " meta_df = pd.read_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_metadata.tsv\", sep='\\t', index_col=0)\n", "except:\n", " meta_df = pd.DataFrame(l1000_meta_list, columns=['id'] + l1000_data_df.columns.tolist()).set_index('id')\n", "if 'batch' not in meta_df.columns:\n", " meta_df['batch'] = meta_df.index.map(lambda x: '_'.join(x.split('_')[:3]))\n", "meta_df.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File at '../L1000_data/NR1I2_L1000_CRISPRKO_metadata.tsv' already exists!\n" ] } ], "source": [ "if not exists(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_metadata.tsv\"): \n", " meta_df.to_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_metadata.tsv\", sep='\\t', index=True)\n", "else: \n", " print(f\"File at '{l1000_data_dir}/{ko_gene}_L1000_CRISPRKO_metadata.tsv' already exists!\")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "batches = meta_df['batch'].unique()\n", "len(batches)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Load in Control Data" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "set()" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ctrl_data_df = pd.read_csv(f\"{l1000_data_dir}/L1000_Controls.tsv\", sep='\\t')\n", "ctrl_data_df = ctrl_data_df[ctrl_data_df['batch'].isin(batches)]\n", "set(batches).difference(ctrl_data_df['batch'])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
local_idpersistent_idbatch
8910L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_A06_...https://lincs-dcic.s3.amazonaws.com/LINCS-data...XPR010_A375.311_96H
8911L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_D05_...https://lincs-dcic.s3.amazonaws.com/LINCS-data...XPR010_A375.311_96H
8912L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_D20_...https://lincs-dcic.s3.amazonaws.com/LINCS-data...XPR010_A375.311_96H
8913L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_D21_...https://lincs-dcic.s3.amazonaws.com/LINCS-data...XPR010_A375.311_96H
8914L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_E13_...https://lincs-dcic.s3.amazonaws.com/LINCS-data...XPR010_A375.311_96H
\n", "
" ], "text/plain": [ " local_id \\\n", "8910 L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_A06_... \n", "8911 L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_D05_... \n", "8912 L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_D20_... \n", "8913 L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_D21_... \n", "8914 L1000_LINCS_DCIC_2021_XPR010_A375.311_96H_E13_... \n", "\n", " persistent_id batch \n", "8910 https://lincs-dcic.s3.amazonaws.com/LINCS-data... XPR010_A375.311_96H \n", "8911 https://lincs-dcic.s3.amazonaws.com/LINCS-data... XPR010_A375.311_96H \n", "8912 https://lincs-dcic.s3.amazonaws.com/LINCS-data... XPR010_A375.311_96H \n", "8913 https://lincs-dcic.s3.amazonaws.com/LINCS-data... XPR010_A375.311_96H \n", "8914 https://lincs-dcic.s3.amazonaws.com/LINCS-data... XPR010_A375.311_96H " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ctrl_data_df.head()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "The following step extracts all control profiles from the same batch as the profiles of interest, and make take up to a few minutes to complete. " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "try: \n", " ctrl_expr_df = pd.read_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_Controls_fulldata.tsv\", sep='\\t', index_col=0)\n", " ctrl_meta_df = pd.read_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_Controls_metadata.tsv\", sep='\\t', index_col=0)\n", "except:\n", " ctrl_data_list = []\n", " ctrl_meta_list = []\n", " for row in ctrl_data_df.itertuples():\n", " try: \n", " temp_df = pd.read_csv(row.persistent_id, sep='\\t', index_col=0)\n", " except:\n", " print(f\"Unable to access data from row {row.Index} at {row.persistent_id}\")\n", " continue\n", " for col in temp_df.columns: \n", " ctrl_meta_list.append([col, row.batch])\n", " ctrl_data_list.append(temp_df)\n", "\n", " ctrl_expr_df = pd.concat(ctrl_data_list, axis=1)\n", " ctrl_meta_df = pd.DataFrame(ctrl_meta_list, columns=['id', 'batch']).set_index('id')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96H_X1_B35:A06XPR010_A375.311_96H_X2_B35:A06XPR010_A375.311_96H_X3_B35:A06XPR010_A375.311_96H_X1_B35:D05XPR010_A375.311_96H_X2_B35:D05XPR010_A375.311_96H_X3_B35:D05XPR010_A375.311_96H_X1_B35:D20XPR010_A375.311_96H_X2_B35:D20XPR010_A375.311_96H_X3_B35:D20XPR010_A375.311_96H_X1_B35:D21...XPR010_YAPC.311_96H_X3_B35:E14XPR010_YAPC.311_96H_X1_B35:F04XPR010_YAPC.311_96H_X2_B35:F04XPR010_YAPC.311_96H_X3_B35:F04XPR010_YAPC.311_96H_X1_B35:H24XPR010_YAPC.311_96H_X2_B35:H24XPR010_YAPC.311_96H_X3_B35:H24XPR010_YAPC.311_96H_X1_B35:K17XPR010_YAPC.311_96H_X2_B35:K17XPR010_YAPC.311_96H_X3_B35:K17
symbol
NAT27.2605757.2808757.020106.9668017.453057.798657.349757.1651007.7081757.48150...12.60108.7739518.0212012.1571507.6912997.31155012.0857518.3623509.2005511.97370
ADA5.0647005.2592505.224355.1443005.382955.030755.070755.1990754.9320255.28315...4.66444.8064504.669503.3913505.9727505.6158754.1375506.1330754.753404.23540
CDH25.7067755.8220505.694305.8530005.641555.711605.987155.8001505.6712005.80255...6.07815.7412505.865955.9157255.2943006.1798006.1611005.7363005.835505.75765
AKT30.8968502.5213002.376851.2959503.116352.511952.383301.7902501.2959503.40630...0.00000.0000000.000000.0000000.0000000.0000000.0000000.0000000.000000.00000
MED65.8840505.7572505.778255.5893506.057505.444705.639805.9297005.8328755.86350...6.26605.6057006.175155.8495005.8514006.1683505.6623005.8713756.375356.18240
\n", "

5 rows × 255 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H_X1_B35:A06 XPR010_A375.311_96H_X2_B35:A06 \\\n", "symbol \n", "NAT2 7.260575 7.280875 \n", "ADA 5.064700 5.259250 \n", "CDH2 5.706775 5.822050 \n", "AKT3 0.896850 2.521300 \n", "MED6 5.884050 5.757250 \n", "\n", " XPR010_A375.311_96H_X3_B35:A06 XPR010_A375.311_96H_X1_B35:D05 \\\n", "symbol \n", "NAT2 7.02010 6.966801 \n", "ADA 5.22435 5.144300 \n", "CDH2 5.69430 5.853000 \n", "AKT3 2.37685 1.295950 \n", "MED6 5.77825 5.589350 \n", "\n", " XPR010_A375.311_96H_X2_B35:D05 XPR010_A375.311_96H_X3_B35:D05 \\\n", "symbol \n", "NAT2 7.45305 7.79865 \n", "ADA 5.38295 5.03075 \n", "CDH2 5.64155 5.71160 \n", "AKT3 3.11635 2.51195 \n", "MED6 6.05750 5.44470 \n", "\n", " XPR010_A375.311_96H_X1_B35:D20 XPR010_A375.311_96H_X2_B35:D20 \\\n", "symbol \n", "NAT2 7.34975 7.165100 \n", "ADA 5.07075 5.199075 \n", "CDH2 5.98715 5.800150 \n", "AKT3 2.38330 1.790250 \n", "MED6 5.63980 5.929700 \n", "\n", " XPR010_A375.311_96H_X3_B35:D20 XPR010_A375.311_96H_X1_B35:D21 ... \\\n", "symbol ... \n", "NAT2 7.708175 7.48150 ... \n", "ADA 4.932025 5.28315 ... \n", "CDH2 5.671200 5.80255 ... \n", "AKT3 1.295950 3.40630 ... \n", "MED6 5.832875 5.86350 ... \n", "\n", " XPR010_YAPC.311_96H_X3_B35:E14 XPR010_YAPC.311_96H_X1_B35:F04 \\\n", "symbol \n", "NAT2 12.6010 8.773951 \n", "ADA 4.6644 4.806450 \n", "CDH2 6.0781 5.741250 \n", "AKT3 0.0000 0.000000 \n", "MED6 6.2660 5.605700 \n", "\n", " XPR010_YAPC.311_96H_X2_B35:F04 XPR010_YAPC.311_96H_X3_B35:F04 \\\n", "symbol \n", "NAT2 8.02120 12.157150 \n", "ADA 4.66950 3.391350 \n", "CDH2 5.86595 5.915725 \n", "AKT3 0.00000 0.000000 \n", "MED6 6.17515 5.849500 \n", "\n", " XPR010_YAPC.311_96H_X1_B35:H24 XPR010_YAPC.311_96H_X2_B35:H24 \\\n", "symbol \n", "NAT2 7.691299 7.311550 \n", "ADA 5.972750 5.615875 \n", "CDH2 5.294300 6.179800 \n", "AKT3 0.000000 0.000000 \n", "MED6 5.851400 6.168350 \n", "\n", " XPR010_YAPC.311_96H_X3_B35:H24 XPR010_YAPC.311_96H_X1_B35:K17 \\\n", "symbol \n", "NAT2 12.085751 8.362350 \n", "ADA 4.137550 6.133075 \n", "CDH2 6.161100 5.736300 \n", "AKT3 0.000000 0.000000 \n", "MED6 5.662300 5.871375 \n", "\n", " XPR010_YAPC.311_96H_X2_B35:K17 XPR010_YAPC.311_96H_X3_B35:K17 \n", "symbol \n", "NAT2 9.20055 11.97370 \n", "ADA 4.75340 4.23540 \n", "CDH2 5.83550 5.75765 \n", "AKT3 0.00000 0.00000 \n", "MED6 6.37535 6.18240 \n", "\n", "[5 rows x 255 columns]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ctrl_expr_df.head()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
batch
id
XPR010_A375.311_96H_X1_B35:A06XPR010_A375.311_96H
XPR010_A375.311_96H_X2_B35:A06XPR010_A375.311_96H
XPR010_A375.311_96H_X3_B35:A06XPR010_A375.311_96H
XPR010_A375.311_96H_X1_B35:D05XPR010_A375.311_96H
XPR010_A375.311_96H_X2_B35:D05XPR010_A375.311_96H
\n", "
" ], "text/plain": [ " batch\n", "id \n", "XPR010_A375.311_96H_X1_B35:A06 XPR010_A375.311_96H\n", "XPR010_A375.311_96H_X2_B35:A06 XPR010_A375.311_96H\n", "XPR010_A375.311_96H_X3_B35:A06 XPR010_A375.311_96H\n", "XPR010_A375.311_96H_X1_B35:D05 XPR010_A375.311_96H\n", "XPR010_A375.311_96H_X2_B35:D05 XPR010_A375.311_96H" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ctrl_meta_df.head()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File at '../L1000_data/NR1I2_L1000_Controls_fulldata.tsv' already exists!\n" ] } ], "source": [ "if not exists(f\"{l1000_data_dir}/{ko_gene}_L1000_Controls_fulldata.tsv\"): \n", " ctrl_expr_df.to_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_Controls_fulldata.tsv\", sep='\\t', index=True)\n", "else: \n", " print(f\"File at '{l1000_data_dir}/{ko_gene}_L1000_Controls_fulldata.tsv' already exists!\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File at '../L1000_data/NR1I2_L1000_Controls_metadata.tsv' already exists!\n" ] } ], "source": [ "if not exists(f\"{l1000_data_dir}/{ko_gene}_L1000_Controls_metadata.tsv\"): \n", " ctrl_meta_df.to_csv(f\"{l1000_data_dir}/{ko_gene}_L1000_Controls_metadata.tsv\", sep='\\t', index=True)\n", "else: \n", " print(f\"File at '{l1000_data_dir}/{ko_gene}_L1000_Controls_metadata.tsv' already exists!\")" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Process Data" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Combine data and remove duplicate genes" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96H_X1_B35:F08XPR010_A375.311_96H_X2_B35:F08XPR010_A375.311_96H_X3_B35:F08XPR010_A375.311_96H_X1_B35:F24XPR010_A375.311_96H_X2_B35:F24XPR010_A375.311_96H_X3_B35:F24XPR010_A549.311_96H_X1.L2_B36:F08XPR010_A549.311_96H_X3_B35:F08XPR010_A549.311_96H_X1.L2_B36:F24XPR010_A549.311_96H_X3_B35:F24...XPR010_YAPC.311_96H_X3_B35:E14XPR010_YAPC.311_96H_X1_B35:F04XPR010_YAPC.311_96H_X2_B35:F04XPR010_YAPC.311_96H_X3_B35:F04XPR010_YAPC.311_96H_X1_B35:H24XPR010_YAPC.311_96H_X2_B35:H24XPR010_YAPC.311_96H_X3_B35:H24XPR010_YAPC.311_96H_X1_B35:K17XPR010_YAPC.311_96H_X2_B35:K17XPR010_YAPC.311_96H_X3_B35:K17
symbol
A1CF4.453154.236354.6342503.931653.872753.751205.34094.675105.608805.23860...10.19290010.74102510.6288010.1744011.36025010.60980010.5832011.227111.16400010.640949
A2M7.225607.470658.5968497.243357.294907.760808.16085.550608.571605.88430...8.1464757.6499008.251658.601407.4703257.5253757.993457.05028.6680008.725750
A4GALT5.432955.446505.6652005.295455.681455.516206.73216.054956.728055.74780...5.4158506.4527505.526405.437655.7097506.0548504.935556.15696.1143004.902300
A4GNT5.372605.289505.2932505.186805.303905.380955.26555.520105.447405.62385...8.3448008.8725508.374008.797158.5769008.6627018.309708.86298.7149518.285049
AAAS7.519807.647807.9566007.596208.076607.874808.13727.559208.285307.90890...6.7195506.6665506.714556.975656.5096006.5762506.786806.42806.5272506.776250
\n", "

5 rows × 312 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H_X1_B35:F08 XPR010_A375.311_96H_X2_B35:F08 \\\n", "symbol \n", "A1CF 4.45315 4.23635 \n", "A2M 7.22560 7.47065 \n", "A4GALT 5.43295 5.44650 \n", "A4GNT 5.37260 5.28950 \n", "AAAS 7.51980 7.64780 \n", "\n", " XPR010_A375.311_96H_X3_B35:F08 XPR010_A375.311_96H_X1_B35:F24 \\\n", "symbol \n", "A1CF 4.634250 3.93165 \n", "A2M 8.596849 7.24335 \n", "A4GALT 5.665200 5.29545 \n", "A4GNT 5.293250 5.18680 \n", "AAAS 7.956600 7.59620 \n", "\n", " XPR010_A375.311_96H_X2_B35:F24 XPR010_A375.311_96H_X3_B35:F24 \\\n", "symbol \n", "A1CF 3.87275 3.75120 \n", "A2M 7.29490 7.76080 \n", "A4GALT 5.68145 5.51620 \n", "A4GNT 5.30390 5.38095 \n", "AAAS 8.07660 7.87480 \n", "\n", " XPR010_A549.311_96H_X1.L2_B36:F08 XPR010_A549.311_96H_X3_B35:F08 \\\n", "symbol \n", "A1CF 5.3409 4.67510 \n", "A2M 8.1608 5.55060 \n", "A4GALT 6.7321 6.05495 \n", "A4GNT 5.2655 5.52010 \n", "AAAS 8.1372 7.55920 \n", "\n", " XPR010_A549.311_96H_X1.L2_B36:F24 XPR010_A549.311_96H_X3_B35:F24 \\\n", "symbol \n", "A1CF 5.60880 5.23860 \n", "A2M 8.57160 5.88430 \n", "A4GALT 6.72805 5.74780 \n", "A4GNT 5.44740 5.62385 \n", "AAAS 8.28530 7.90890 \n", "\n", " ... XPR010_YAPC.311_96H_X3_B35:E14 XPR010_YAPC.311_96H_X1_B35:F04 \\\n", "symbol ... \n", "A1CF ... 10.192900 10.741025 \n", "A2M ... 8.146475 7.649900 \n", "A4GALT ... 5.415850 6.452750 \n", "A4GNT ... 8.344800 8.872550 \n", "AAAS ... 6.719550 6.666550 \n", "\n", " XPR010_YAPC.311_96H_X2_B35:F04 XPR010_YAPC.311_96H_X3_B35:F04 \\\n", "symbol \n", "A1CF 10.62880 10.17440 \n", "A2M 8.25165 8.60140 \n", "A4GALT 5.52640 5.43765 \n", "A4GNT 8.37400 8.79715 \n", "AAAS 6.71455 6.97565 \n", "\n", " XPR010_YAPC.311_96H_X1_B35:H24 XPR010_YAPC.311_96H_X2_B35:H24 \\\n", "symbol \n", "A1CF 11.360250 10.609800 \n", "A2M 7.470325 7.525375 \n", "A4GALT 5.709750 6.054850 \n", "A4GNT 8.576900 8.662701 \n", "AAAS 6.509600 6.576250 \n", "\n", " XPR010_YAPC.311_96H_X3_B35:H24 XPR010_YAPC.311_96H_X1_B35:K17 \\\n", "symbol \n", "A1CF 10.58320 11.2271 \n", "A2M 7.99345 7.0502 \n", "A4GALT 4.93555 6.1569 \n", "A4GNT 8.30970 8.8629 \n", "AAAS 6.78680 6.4280 \n", "\n", " XPR010_YAPC.311_96H_X2_B35:K17 XPR010_YAPC.311_96H_X3_B35:K17 \n", "symbol \n", "A1CF 11.164000 10.640949 \n", "A2M 8.668000 8.725750 \n", "A4GALT 6.114300 4.902300 \n", "A4GNT 8.714951 8.285049 \n", "AAAS 6.527250 6.776250 \n", "\n", "[5 rows x 312 columns]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "combined_expr_df = pd.concat([\n", " expr_df.groupby(expr_df.index).mean(), \n", " ctrl_expr_df.groupby(ctrl_expr_df.index).mean()\n", "], axis=1)\n", "combined_expr_df.head()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Compute Signatures: Batch Perturbations vs. Batch Controls" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "batch_profiles = {x: {'perts': [], 'ctrls': []} for x in batches}\n", "for b in batches: \n", " batch_profiles[b]['perts'] = meta_df[meta_df['batch'] == b].index.tolist()\n", " batch_profiles[b]['ctrls'] = ctrl_meta_df[ctrl_meta_df['batch'] == b].index.tolist()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "batch_signatures = {\n", " 'cd': {}, \n", " 'limma': {}, \n", " 'limma-voom': {},\n", " 'fc': {},\n", " 'ranksum': {},\n", " 'ttest': {}\n", "}" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Characteristic Direction" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# Function for computing signatures with characteristic direction\n", "def cd_signature(ctrl_ids, case_ids, dataset):\n", " \n", " signature = characteristic_direction(\n", " dataset.loc[:, ctrl_ids], \n", " dataset.loc[:, case_ids], \n", " calculate_sig=True\n", " )\n", " signature['Significance'] = signature['CD-coefficient'].apply(abs)\n", " \n", " return signature.sort_values(by=['CD-coefficient'], ascending=False)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Note: the following step may take a few minutes to run." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "for b in batches: \n", " batch_signatures['cd'][b] = cd_signature(\n", " batch_profiles[b]['ctrls'], \n", " batch_profiles[b]['perts'],\n", " combined_expr_df\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Limma" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "# Function for computing signatures\n", "def limma(ctrl_ids, case_ids, dataset, voom):\n", " \n", " signature = limma_voom.limma_voom_differential_expression(\n", " dataset.loc[:, ctrl_ids],\n", " dataset.loc[:, case_ids],\n", " voom_design=voom,\n", " filter_genes=False\n", " )\n", " signature['Significance'] = signature['P.Value']\n", "\n", " return signature.sort_values(\"t\", ascending=False)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "Note: the following step may take a few minutes to run." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "R[write to console]: Loading required package: R.oo\n", "\n", "R[write to console]: Loading required package: R.methodsS3\n", "\n", "R[write to console]: R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.\n", "\n", "R[write to console]: R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.\n", "\n", "R[write to console]: \n", "Attaching package: ‘R.oo’\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:R.methodsS3’:\n", "\n", " throw\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:methods’:\n", "\n", " getClasses, getMethods\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:base’:\n", "\n", " attach, detach, load, save\n", "\n", "\n", "R[write to console]: R.utils v2.10.1 (2020-08-26 22:50:31 UTC) successfully loaded. See ?R.utils for help.\n", "\n", "R[write to console]: \n", "Attaching package: ‘R.utils’\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:utils’:\n", "\n", " timestamp\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:base’:\n", "\n", " cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,\n", " warnings\n", "\n", "\n", "R[write to console]: \n", "Attaching package: ‘RCurl’\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:R.utils’:\n", "\n", " reset\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:R.oo’:\n", "\n", " clone\n", "\n", "\n", "R[write to console]: Loading required package: S4Vectors\n", "\n", "R[write to console]: Loading required package: stats4\n", "\n", "R[write to console]: Loading required package: BiocGenerics\n", "\n", "R[write to console]: Loading required package: parallel\n", "\n", "R[write to console]: \n", "Attaching package: ‘BiocGenerics’\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:parallel’:\n", "\n", " clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,\n", " clusterExport, clusterMap, parApply, parCapply, parLapply,\n", " parLapplyLB, parRapply, parSapply, parSapplyLB\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:stats’:\n", "\n", " IQR, mad, sd, var, xtabs\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:base’:\n", "\n", " Filter, Find, Map, Position, Reduce, anyDuplicated, append,\n", " as.data.frame, basename, cbind, colnames, dirname, do.call,\n", " duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,\n", " lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,\n", " pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,\n", " tapply, union, unique, unsplit, which.max, which.min\n", "\n", "\n", "R[write to console]: \n", "Attaching package: ‘S4Vectors’\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:base’:\n", "\n", " I, expand.grid, unname\n", "\n", "\n", "R[write to console]: Loading required package: IRanges\n", "\n", "R[write to console]: \n", "Attaching package: ‘IRanges’\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:R.oo’:\n", "\n", " trim\n", "\n", "\n", "R[write to console]: Loading required package: GenomicRanges\n", "\n", "R[write to console]: Loading required package: GenomeInfoDb\n", "\n", "R[write to console]: Loading required package: SummarizedExperiment\n", "\n", "R[write to console]: Loading required package: MatrixGenerics\n", "\n", "R[write to console]: Loading required package: matrixStats\n", "\n", "R[write to console]: \n", "Attaching package: ‘MatrixGenerics’\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:matrixStats’:\n", "\n", " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n", " colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n", " colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n", " colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n", " colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n", " colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n", " colWeightedMeans, colWeightedMedians, colWeightedSds,\n", " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n", " rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n", " rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n", " rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n", " rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n", " rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n", " rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", " rowWeightedSds, rowWeightedVars\n", "\n", "\n", "R[write to console]: Loading required package: Biobase\n", "\n", "R[write to console]: Welcome to Bioconductor\n", "\n", " Vignettes contain introductory material; view with\n", " 'browseVignettes()'. To cite Bioconductor, see\n", " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", "\n", "\n", "R[write to console]: \n", "Attaching package: ‘Biobase’\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:MatrixGenerics’:\n", "\n", " rowMedians\n", "\n", "\n", "R[write to console]: The following objects are masked from ‘package:matrixStats’:\n", "\n", " anyMissing, rowMedians\n", "\n", "\n", "R[write to console]: \n", "Attaching package: ‘limma’\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:DESeq2’:\n", "\n", " plotMA\n", "\n", "\n", "R[write to console]: The following object is masked from ‘package:BiocGenerics’:\n", "\n", " plotMA\n", "\n", "\n" ] } ], "source": [ "for b in batches: \n", " batch_signatures['limma'][b] = limma(\n", " batch_profiles[b]['ctrls'], \n", " batch_profiles[b]['perts'], \n", " combined_expr_df,\n", " voom=False\n", " )" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "for b in batches: \n", " batch_signatures['limma-voom'][b] = limma(\n", " batch_profiles[b]['ctrls'], \n", " batch_profiles[b]['perts'], \n", " combined_expr_df,\n", " voom=True\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Wilcoxon Rank-Sum Test" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "def ranksum(ctrl_ids, case_ids, dataset):\n", " if len(ctrl_ids) + len(case_ids) < 32: \n", " print(\"Warning! Sample sizes < 16 generally do not provide good results. \")\n", " res_array = []\n", " for gene in dataset.index: \n", " res = ranksums(\n", " dataset.loc[gene, case_ids],\n", " dataset.loc[gene, ctrl_ids]\n", " )\n", " res_array.append([gene, res.statistic, res.pvalue])\n", " signature = pd.DataFrame(\n", " res_array, columns=['Geneid', 'Statistic', 'Pvalue']\n", " ).set_index('Geneid')\n", " signature['Significance'] = signature['Pvalue']\n", " return signature.sort_values(by=['Statistic'], ascending=False)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Warning! Sample sizes < 16 generally do not provide good results. \n", "Warning! Sample sizes < 16 generally do not provide good results. \n", "Warning! Sample sizes < 16 generally do not provide good results. \n" ] } ], "source": [ "for b in batches: \n", " batch_signatures['ranksum'][b] = ranksum(\n", " batch_profiles[b]['ctrls'], \n", " batch_profiles[b]['perts'], \n", " combined_expr_df\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Welch's t-test" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "def ttest(ctrl_ids, case_ids, dataset):\n", " res_array = []\n", " for gene in dataset.index: \n", " res = ttest_ind(\n", " dataset.loc[gene, case_ids],\n", " dataset.loc[gene, ctrl_ids],\n", " equal_var = False\n", " )\n", " res_array.append([gene, res.statistic, res.pvalue])\n", " signature = pd.DataFrame(\n", " res_array, columns=['Geneid', 'Statistic', 'Pvalue']\n", " ).set_index('Geneid')\n", " signature['Significance'] = signature['Pvalue']\n", " return signature.sort_values(by=['Statistic'], ascending=False)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "for b in batches: \n", " batch_signatures['ttest'][b] = ttest(\n", " batch_profiles[b]['ctrls'], \n", " batch_profiles[b]['perts'], \n", " combined_expr_df\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### (log2) Fold Change" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "# Function for computing signatures with fold change\n", "def logFC(ctrl_ids, case_ids, dataset):\n", "\n", " case_mean = dataset.loc[:, case_ids].mean(axis=1)\n", " ctrl_mean = dataset.loc[:, ctrl_ids].mean(axis=1)\n", "\n", " signature = case_mean / (ctrl_mean + 0.001)\n", "\n", " signature_df = pd.DataFrame(\n", " signature.apply(lambda x: log2(x+0.001)), columns=['logFC']\n", " )\n", " signature_df['Significance'] = signature_df['logFC'].apply(abs)\n", " \n", " return signature_df.sort_values('logFC', ascending=False)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "for b in batches: \n", " batch_signatures['fc'][b] = logFC(\n", " batch_profiles[b]['ctrls'], \n", " batch_profiles[b]['perts'],\n", " combined_expr_df\n", " )" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## All signatures" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "All CD batch signatures" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96HXPR010_A549.311_96HXPR010_AGS.311_96HXPR010_BICR6.311_96HXPR010_ES2.311_96HXPR010_HT29.311_96HXPR010_MCF7.311_96HXPR010_PC3.311B_96HXPR010_U251MG.311_96HXPR010_YAPC.311_96H
Gene
A1CF-0.019577-0.016974-0.015616-0.016290-0.020444-0.018519-0.017728-0.020971-0.017763-0.019295
A2M0.003215-0.0035380.001771-0.001684-0.001222-0.0024090.0010870.0027430.0019580.004480
A4GALT-0.0007400.0006670.0006890.0021510.000054-0.001610-0.0006140.000041-0.0001400.000447
A4GNT-0.011040-0.008234-0.014184-0.013903-0.014138-0.015587-0.013585-0.012055-0.013713-0.009598
AAAS0.0049270.0055850.0052490.0036790.0050780.0046420.0052650.0040760.0049210.003304
.................................
ZXDB0.000307-0.001142-0.000563-0.000166-0.001886-0.001636-0.000132-0.000568-0.0016560.000642
ZXDC-0.004677-0.009372-0.007265-0.002839-0.005829-0.001725-0.007841-0.008623-0.010583-0.009344
ZYX0.0189720.0146850.0184840.0127410.0193930.0115630.0087500.0221700.0168440.015572
ZZEF1-0.007563-0.007977-0.001991-0.002495-0.005057-0.0019010.006034-0.0046590.000046-0.003763
ZZZ30.0050010.0081170.0028340.0044800.0092390.003054-0.0005520.0038910.0025080.001957
\n", "

12327 rows × 10 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H XPR010_A549.311_96H XPR010_AGS.311_96H \\\n", "Gene \n", "A1CF -0.019577 -0.016974 -0.015616 \n", "A2M 0.003215 -0.003538 0.001771 \n", "A4GALT -0.000740 0.000667 0.000689 \n", "A4GNT -0.011040 -0.008234 -0.014184 \n", "AAAS 0.004927 0.005585 0.005249 \n", "... ... ... ... \n", "ZXDB 0.000307 -0.001142 -0.000563 \n", "ZXDC -0.004677 -0.009372 -0.007265 \n", "ZYX 0.018972 0.014685 0.018484 \n", "ZZEF1 -0.007563 -0.007977 -0.001991 \n", "ZZZ3 0.005001 0.008117 0.002834 \n", "\n", " XPR010_BICR6.311_96H XPR010_ES2.311_96H XPR010_HT29.311_96H \\\n", "Gene \n", "A1CF -0.016290 -0.020444 -0.018519 \n", "A2M -0.001684 -0.001222 -0.002409 \n", "A4GALT 0.002151 0.000054 -0.001610 \n", "A4GNT -0.013903 -0.014138 -0.015587 \n", "AAAS 0.003679 0.005078 0.004642 \n", "... ... ... ... \n", "ZXDB -0.000166 -0.001886 -0.001636 \n", "ZXDC -0.002839 -0.005829 -0.001725 \n", "ZYX 0.012741 0.019393 0.011563 \n", "ZZEF1 -0.002495 -0.005057 -0.001901 \n", "ZZZ3 0.004480 0.009239 0.003054 \n", "\n", " XPR010_MCF7.311_96H XPR010_PC3.311B_96H XPR010_U251MG.311_96H \\\n", "Gene \n", "A1CF -0.017728 -0.020971 -0.017763 \n", "A2M 0.001087 0.002743 0.001958 \n", "A4GALT -0.000614 0.000041 -0.000140 \n", "A4GNT -0.013585 -0.012055 -0.013713 \n", "AAAS 0.005265 0.004076 0.004921 \n", "... ... ... ... \n", "ZXDB -0.000132 -0.000568 -0.001656 \n", "ZXDC -0.007841 -0.008623 -0.010583 \n", "ZYX 0.008750 0.022170 0.016844 \n", "ZZEF1 0.006034 -0.004659 0.000046 \n", "ZZZ3 -0.000552 0.003891 0.002508 \n", "\n", " XPR010_YAPC.311_96H \n", "Gene \n", "A1CF -0.019295 \n", "A2M 0.004480 \n", "A4GALT 0.000447 \n", "A4GNT -0.009598 \n", "AAAS 0.003304 \n", "... ... \n", "ZXDB 0.000642 \n", "ZXDC -0.009344 \n", "ZYX 0.015572 \n", "ZZEF1 -0.003763 \n", "ZZZ3 0.001957 \n", "\n", "[12327 rows x 10 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "All LIMMA batch signatures" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96HXPR010_A549.311_96HXPR010_AGS.311_96HXPR010_BICR6.311_96HXPR010_ES2.311_96HXPR010_HT29.311_96HXPR010_MCF7.311_96HXPR010_PC3.311B_96HXPR010_U251MG.311_96HXPR010_YAPC.311_96H
Gene
A1CF-60.019539-28.815911-44.964117-42.496500-76.125622-40.349357-38.287313-65.604340-55.876038-43.141008
A2M4.845533-1.8475833.406957-2.852660-2.416547-0.5370581.5652559.0060323.8249932.729793
A4GALT-3.617646-1.0163860.5595266.139557-2.310624-4.533725-3.5293590.950890-2.5837322.579730
A4GNT-42.919025-19.718965-50.182363-30.878052-47.377980-36.774901-24.278347-24.678781-38.743252-27.158267
AAAS26.28291013.76757218.23676314.89750124.92996013.01788016.84603116.41662323.69076014.218616
.................................
ZXDB0.235291-2.809396-0.9873681.787694-6.089417-4.552719-0.102972-0.915882-4.805944-6.810436
ZXDC-16.760846-11.868575-15.712726-6.614901-12.108318-1.424355-16.841576-23.859809-22.600620-8.387029
ZYX36.11229013.85556023.70596420.62945437.05740915.96020611.38551835.86425130.87587525.291581
ZZEF1-19.567202-7.184474-1.622090-7.559272-15.772091-9.1976903.419958-8.114486-3.014485-9.025222
ZZZ317.7887064.8208156.4281178.10547028.5210798.6122883.1896019.1254499.9042612.446274
\n", "

12327 rows × 10 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H XPR010_A549.311_96H XPR010_AGS.311_96H \\\n", "Gene \n", "A1CF -60.019539 -28.815911 -44.964117 \n", "A2M 4.845533 -1.847583 3.406957 \n", "A4GALT -3.617646 -1.016386 0.559526 \n", "A4GNT -42.919025 -19.718965 -50.182363 \n", "AAAS 26.282910 13.767572 18.236763 \n", "... ... ... ... \n", "ZXDB 0.235291 -2.809396 -0.987368 \n", "ZXDC -16.760846 -11.868575 -15.712726 \n", "ZYX 36.112290 13.855560 23.705964 \n", "ZZEF1 -19.567202 -7.184474 -1.622090 \n", "ZZZ3 17.788706 4.820815 6.428117 \n", "\n", " XPR010_BICR6.311_96H XPR010_ES2.311_96H XPR010_HT29.311_96H \\\n", "Gene \n", "A1CF -42.496500 -76.125622 -40.349357 \n", "A2M -2.852660 -2.416547 -0.537058 \n", "A4GALT 6.139557 -2.310624 -4.533725 \n", "A4GNT -30.878052 -47.377980 -36.774901 \n", "AAAS 14.897501 24.929960 13.017880 \n", "... ... ... ... \n", "ZXDB 1.787694 -6.089417 -4.552719 \n", "ZXDC -6.614901 -12.108318 -1.424355 \n", "ZYX 20.629454 37.057409 15.960206 \n", "ZZEF1 -7.559272 -15.772091 -9.197690 \n", "ZZZ3 8.105470 28.521079 8.612288 \n", "\n", " XPR010_MCF7.311_96H XPR010_PC3.311B_96H XPR010_U251MG.311_96H \\\n", "Gene \n", "A1CF -38.287313 -65.604340 -55.876038 \n", "A2M 1.565255 9.006032 3.824993 \n", "A4GALT -3.529359 0.950890 -2.583732 \n", "A4GNT -24.278347 -24.678781 -38.743252 \n", "AAAS 16.846031 16.416623 23.690760 \n", "... ... ... ... \n", "ZXDB -0.102972 -0.915882 -4.805944 \n", "ZXDC -16.841576 -23.859809 -22.600620 \n", "ZYX 11.385518 35.864251 30.875875 \n", "ZZEF1 3.419958 -8.114486 -3.014485 \n", "ZZZ3 3.189601 9.125449 9.904261 \n", "\n", " XPR010_YAPC.311_96H \n", "Gene \n", "A1CF -43.141008 \n", "A2M 2.729793 \n", "A4GALT 2.579730 \n", "A4GNT -27.158267 \n", "AAAS 14.218616 \n", "... ... \n", "ZXDB -6.810436 \n", "ZXDC -8.387029 \n", "ZYX 25.291581 \n", "ZZEF1 -9.025222 \n", "ZZZ3 2.446274 \n", "\n", "[12327 rows x 10 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "All LIMMA-VOOM batch signatures" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96HXPR010_A549.311_96HXPR010_AGS.311_96HXPR010_BICR6.311_96HXPR010_ES2.311_96HXPR010_HT29.311_96HXPR010_MCF7.311_96HXPR010_PC3.311B_96HXPR010_U251MG.311_96HXPR010_YAPC.311_96H
Gene
A1CF-50.651436-24.147615-33.979375-32.001838-42.683320-35.396960-27.405920-32.899780-39.820453-32.782214
A2M4.955400-1.8447243.600092-2.898473-2.402441-0.5384321.5654489.3407043.9122972.731678
A4GALT-3.589970-1.0115280.5543466.084361-2.312838-4.518897-3.5140230.952444-2.6297742.562922
A4GNT-39.256483-17.359412-45.350198-25.820052-40.333346-29.798909-21.557148-22.496492-34.648513-26.759321
AAAS26.20346913.83907418.30413314.37457424.73727513.11290116.68013016.33067722.50793114.093464
.................................
ZXDB0.230335-2.691749-0.9597211.785147-6.041614-4.333230-0.102150-0.908215-4.765242-6.808437
ZXDC-16.024135-10.927358-14.756960-6.754619-11.315591-1.416653-15.285268-22.543888-22.328144-8.161337
ZYX44.93267219.30950831.52298025.00826249.47213019.13133813.65833446.53796435.15709930.122082
ZZEF1-17.671956-5.840489-1.605732-6.858084-14.333785-8.3082583.458953-7.897925-2.958390-8.686235
ZZZ318.7901845.2957186.7607018.66383433.0608969.1209523.3077649.32072110.2935962.459377
\n", "

12327 rows × 10 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H XPR010_A549.311_96H XPR010_AGS.311_96H \\\n", "Gene \n", "A1CF -50.651436 -24.147615 -33.979375 \n", "A2M 4.955400 -1.844724 3.600092 \n", "A4GALT -3.589970 -1.011528 0.554346 \n", "A4GNT -39.256483 -17.359412 -45.350198 \n", "AAAS 26.203469 13.839074 18.304133 \n", "... ... ... ... \n", "ZXDB 0.230335 -2.691749 -0.959721 \n", "ZXDC -16.024135 -10.927358 -14.756960 \n", "ZYX 44.932672 19.309508 31.522980 \n", "ZZEF1 -17.671956 -5.840489 -1.605732 \n", "ZZZ3 18.790184 5.295718 6.760701 \n", "\n", " XPR010_BICR6.311_96H XPR010_ES2.311_96H XPR010_HT29.311_96H \\\n", "Gene \n", "A1CF -32.001838 -42.683320 -35.396960 \n", "A2M -2.898473 -2.402441 -0.538432 \n", "A4GALT 6.084361 -2.312838 -4.518897 \n", "A4GNT -25.820052 -40.333346 -29.798909 \n", "AAAS 14.374574 24.737275 13.112901 \n", "... ... ... ... \n", "ZXDB 1.785147 -6.041614 -4.333230 \n", "ZXDC -6.754619 -11.315591 -1.416653 \n", "ZYX 25.008262 49.472130 19.131338 \n", "ZZEF1 -6.858084 -14.333785 -8.308258 \n", "ZZZ3 8.663834 33.060896 9.120952 \n", "\n", " XPR010_MCF7.311_96H XPR010_PC3.311B_96H XPR010_U251MG.311_96H \\\n", "Gene \n", "A1CF -27.405920 -32.899780 -39.820453 \n", "A2M 1.565448 9.340704 3.912297 \n", "A4GALT -3.514023 0.952444 -2.629774 \n", "A4GNT -21.557148 -22.496492 -34.648513 \n", "AAAS 16.680130 16.330677 22.507931 \n", "... ... ... ... \n", "ZXDB -0.102150 -0.908215 -4.765242 \n", "ZXDC -15.285268 -22.543888 -22.328144 \n", "ZYX 13.658334 46.537964 35.157099 \n", "ZZEF1 3.458953 -7.897925 -2.958390 \n", "ZZZ3 3.307764 9.320721 10.293596 \n", "\n", " XPR010_YAPC.311_96H \n", "Gene \n", "A1CF -32.782214 \n", "A2M 2.731678 \n", "A4GALT 2.562922 \n", "A4GNT -26.759321 \n", "AAAS 14.093464 \n", "... ... \n", "ZXDB -6.808437 \n", "ZXDC -8.161337 \n", "ZYX 30.122082 \n", "ZZEF1 -8.686235 \n", "ZZZ3 2.459377 \n", "\n", "[12327 rows x 10 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "All RANKSUM batch signatures" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96HXPR010_A549.311_96HXPR010_AGS.311_96HXPR010_BICR6.311_96HXPR010_ES2.311_96HXPR010_HT29.311_96HXPR010_MCF7.311_96HXPR010_PC3.311B_96HXPR010_U251MG.311_96HXPR010_YAPC.311_96H
Gene
A1CF-3.765875-3.064524-3.75-3.780756-3.478042-3.780756-3.765875-3.780756-3.780756-3.780756
A2M3.476193-0.4256282.60-2.170434-1.919879-0.0933520.7724873.6874042.8472361.166900
A4GALT-3.041669-0.851257-0.153.780756-2.532014-3.313996-3.0899490.933520-2.4738282.287124
A4GNT-3.765875-3.064524-3.75-3.780756-3.478042-3.780756-3.765875-3.780756-3.780756-3.780756
AAAS3.7658753.0645243.753.7807563.4780423.7807563.7658753.7807563.7807563.780756
.................................
ZXDB-0.289683-2.724021-1.201.400280-3.478042-3.267320-0.241402-1.586984-3.780756-3.780756
ZXDC-3.765875-3.064524-3.75-3.734080-3.478042-1.633660-3.765875-3.780756-3.780756-3.687404
ZYX3.7658753.0645243.753.7807563.4780423.7807563.7658753.7807563.7807563.780756
ZZEF1-3.765875-2.979398-1.55-3.780756-3.478042-3.7807562.945108-3.780756-3.220644-3.780756
ZZZ33.7658753.0645243.753.7807563.4780423.7807562.8968273.7340803.7807561.260252
\n", "

12327 rows × 10 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H XPR010_A549.311_96H XPR010_AGS.311_96H \\\n", "Gene \n", "A1CF -3.765875 -3.064524 -3.75 \n", "A2M 3.476193 -0.425628 2.60 \n", "A4GALT -3.041669 -0.851257 -0.15 \n", "A4GNT -3.765875 -3.064524 -3.75 \n", "AAAS 3.765875 3.064524 3.75 \n", "... ... ... ... \n", "ZXDB -0.289683 -2.724021 -1.20 \n", "ZXDC -3.765875 -3.064524 -3.75 \n", "ZYX 3.765875 3.064524 3.75 \n", "ZZEF1 -3.765875 -2.979398 -1.55 \n", "ZZZ3 3.765875 3.064524 3.75 \n", "\n", " XPR010_BICR6.311_96H XPR010_ES2.311_96H XPR010_HT29.311_96H \\\n", "Gene \n", "A1CF -3.780756 -3.478042 -3.780756 \n", "A2M -2.170434 -1.919879 -0.093352 \n", "A4GALT 3.780756 -2.532014 -3.313996 \n", "A4GNT -3.780756 -3.478042 -3.780756 \n", "AAAS 3.780756 3.478042 3.780756 \n", "... ... ... ... \n", "ZXDB 1.400280 -3.478042 -3.267320 \n", "ZXDC -3.734080 -3.478042 -1.633660 \n", "ZYX 3.780756 3.478042 3.780756 \n", "ZZEF1 -3.780756 -3.478042 -3.780756 \n", "ZZZ3 3.780756 3.478042 3.780756 \n", "\n", " XPR010_MCF7.311_96H XPR010_PC3.311B_96H XPR010_U251MG.311_96H \\\n", "Gene \n", "A1CF -3.765875 -3.780756 -3.780756 \n", "A2M 0.772487 3.687404 2.847236 \n", "A4GALT -3.089949 0.933520 -2.473828 \n", "A4GNT -3.765875 -3.780756 -3.780756 \n", "AAAS 3.765875 3.780756 3.780756 \n", "... ... ... ... \n", "ZXDB -0.241402 -1.586984 -3.780756 \n", "ZXDC -3.765875 -3.780756 -3.780756 \n", "ZYX 3.765875 3.780756 3.780756 \n", "ZZEF1 2.945108 -3.780756 -3.220644 \n", "ZZZ3 2.896827 3.734080 3.780756 \n", "\n", " XPR010_YAPC.311_96H \n", "Gene \n", "A1CF -3.780756 \n", "A2M 1.166900 \n", "A4GALT 2.287124 \n", "A4GNT -3.780756 \n", "AAAS 3.780756 \n", "... ... \n", "ZXDB -3.780756 \n", "ZXDC -3.687404 \n", "ZYX 3.780756 \n", "ZZEF1 -3.780756 \n", "ZZZ3 1.260252 \n", "\n", "[12327 rows x 10 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "All TTEST batch signatures" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96HXPR010_A549.311_96HXPR010_AGS.311_96HXPR010_BICR6.311_96HXPR010_ES2.311_96HXPR010_HT29.311_96HXPR010_MCF7.311_96HXPR010_PC3.311B_96HXPR010_U251MG.311_96HXPR010_YAPC.311_96H
Gene
A1CF-47.343241-25.717956-42.861009-34.360667-60.751893-30.899225-35.139583-71.404329-71.268026-42.707136
A2M3.446543-0.8144052.952941-1.898905-1.956064-0.4060140.9006296.1190732.3532101.439096
A4GALT-4.378029-0.7931520.3845559.602556-4.454827-7.037581-4.1548040.991804-3.4762834.040070
A4GNT-64.783790-29.296212-51.959749-45.564620-65.113722-51.629066-35.261361-38.811093-59.815876-36.346808
AAAS17.72452612.04216829.16760312.07700220.54580514.86153912.54270516.35987130.74898717.028256
.................................
ZXDB-0.416080-4.099616-1.6013541.897163-8.683223-4.247329-0.495350-1.496384-6.292793-6.538260
ZXDC-21.116532-16.305855-23.107084-10.698635-22.546653-2.146681-18.682881-33.469199-23.994271-12.848385
ZYX39.00468319.24998326.09735922.58870452.21929727.15469511.96321947.13647121.37109323.821547
ZZEF1-30.433408-9.115103-1.803287-11.454066-18.123284-14.1509274.327542-11.624698-5.539892-14.754975
ZZZ315.1916158.2705328.12203210.11478139.83219610.3524854.0851265.3614098.4599801.403904
\n", "

12327 rows × 10 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H XPR010_A549.311_96H XPR010_AGS.311_96H \\\n", "Gene \n", "A1CF -47.343241 -25.717956 -42.861009 \n", "A2M 3.446543 -0.814405 2.952941 \n", "A4GALT -4.378029 -0.793152 0.384555 \n", "A4GNT -64.783790 -29.296212 -51.959749 \n", "AAAS 17.724526 12.042168 29.167603 \n", "... ... ... ... \n", "ZXDB -0.416080 -4.099616 -1.601354 \n", "ZXDC -21.116532 -16.305855 -23.107084 \n", "ZYX 39.004683 19.249983 26.097359 \n", "ZZEF1 -30.433408 -9.115103 -1.803287 \n", "ZZZ3 15.191615 8.270532 8.122032 \n", "\n", " XPR010_BICR6.311_96H XPR010_ES2.311_96H XPR010_HT29.311_96H \\\n", "Gene \n", "A1CF -34.360667 -60.751893 -30.899225 \n", "A2M -1.898905 -1.956064 -0.406014 \n", "A4GALT 9.602556 -4.454827 -7.037581 \n", "A4GNT -45.564620 -65.113722 -51.629066 \n", "AAAS 12.077002 20.545805 14.861539 \n", "... ... ... ... \n", "ZXDB 1.897163 -8.683223 -4.247329 \n", "ZXDC -10.698635 -22.546653 -2.146681 \n", "ZYX 22.588704 52.219297 27.154695 \n", "ZZEF1 -11.454066 -18.123284 -14.150927 \n", "ZZZ3 10.114781 39.832196 10.352485 \n", "\n", " XPR010_MCF7.311_96H XPR010_PC3.311B_96H XPR010_U251MG.311_96H \\\n", "Gene \n", "A1CF -35.139583 -71.404329 -71.268026 \n", "A2M 0.900629 6.119073 2.353210 \n", "A4GALT -4.154804 0.991804 -3.476283 \n", "A4GNT -35.261361 -38.811093 -59.815876 \n", "AAAS 12.542705 16.359871 30.748987 \n", "... ... ... ... \n", "ZXDB -0.495350 -1.496384 -6.292793 \n", "ZXDC -18.682881 -33.469199 -23.994271 \n", "ZYX 11.963219 47.136471 21.371093 \n", "ZZEF1 4.327542 -11.624698 -5.539892 \n", "ZZZ3 4.085126 5.361409 8.459980 \n", "\n", " XPR010_YAPC.311_96H \n", "Gene \n", "A1CF -42.707136 \n", "A2M 1.439096 \n", "A4GALT 4.040070 \n", "A4GNT -36.346808 \n", "AAAS 17.028256 \n", "... ... \n", "ZXDB -6.538260 \n", "ZXDC -12.848385 \n", "ZYX 23.821547 \n", "ZZEF1 -14.754975 \n", "ZZZ3 1.403904 \n", "\n", "[12327 rows x 10 columns]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "All FC batch signatures" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
XPR010_A375.311_96HXPR010_A549.311_96HXPR010_AGS.311_96HXPR010_BICR6.311_96HXPR010_ES2.311_96HXPR010_HT29.311_96HXPR010_MCF7.311_96HXPR010_PC3.311B_96HXPR010_U251MG.311_96HXPR010_YAPC.311_96H
Gene
A1CF-1.418462-1.040406-1.136366-1.194335-1.601811-1.222860-1.217650-1.387168-1.239583-1.206195
A2M0.157055-0.1233500.240677-0.164841-0.072379-0.0268770.1087720.2724030.1590510.225687
A4GALT-0.076488-0.0449040.0090530.139620-0.056478-0.118418-0.1085460.019782-0.0713140.106599
A4GNT-0.767852-0.735214-0.931993-0.863029-0.898443-0.979517-0.801284-0.709464-0.933154-0.581013
AAAS0.3454460.4171200.3293620.2142010.3961000.3238690.3143840.2386650.3257970.263725
.................................
ZXDB-0.003182-0.080916-0.0243530.027470-0.115208-0.109797-0.006245-0.023256-0.091842-0.145286
ZXDC-0.340808-0.592351-0.441383-0.242187-0.334438-0.054448-0.550889-0.568556-0.568459-0.348030
ZYX1.1627560.8135151.2138840.7328711.1977000.8544810.5061341.1240261.0420411.012969
ZZEF1-0.414720-0.482071-0.054090-0.337330-0.374806-0.4377430.199752-0.259344-0.171825-0.375506
ZZZ30.3257690.3082560.1100880.2456610.5911740.2065790.1060090.2074730.2365880.064532
\n", "

12327 rows × 10 columns

\n", "
" ], "text/plain": [ " XPR010_A375.311_96H XPR010_A549.311_96H XPR010_AGS.311_96H \\\n", "Gene \n", "A1CF -1.418462 -1.040406 -1.136366 \n", "A2M 0.157055 -0.123350 0.240677 \n", "A4GALT -0.076488 -0.044904 0.009053 \n", "A4GNT -0.767852 -0.735214 -0.931993 \n", "AAAS 0.345446 0.417120 0.329362 \n", "... ... ... ... \n", "ZXDB -0.003182 -0.080916 -0.024353 \n", "ZXDC -0.340808 -0.592351 -0.441383 \n", "ZYX 1.162756 0.813515 1.213884 \n", "ZZEF1 -0.414720 -0.482071 -0.054090 \n", "ZZZ3 0.325769 0.308256 0.110088 \n", "\n", " XPR010_BICR6.311_96H XPR010_ES2.311_96H XPR010_HT29.311_96H \\\n", "Gene \n", "A1CF -1.194335 -1.601811 -1.222860 \n", "A2M -0.164841 -0.072379 -0.026877 \n", "A4GALT 0.139620 -0.056478 -0.118418 \n", "A4GNT -0.863029 -0.898443 -0.979517 \n", "AAAS 0.214201 0.396100 0.323869 \n", "... ... ... ... \n", "ZXDB 0.027470 -0.115208 -0.109797 \n", "ZXDC -0.242187 -0.334438 -0.054448 \n", "ZYX 0.732871 1.197700 0.854481 \n", "ZZEF1 -0.337330 -0.374806 -0.437743 \n", "ZZZ3 0.245661 0.591174 0.206579 \n", "\n", " XPR010_MCF7.311_96H XPR010_PC3.311B_96H XPR010_U251MG.311_96H \\\n", "Gene \n", "A1CF -1.217650 -1.387168 -1.239583 \n", "A2M 0.108772 0.272403 0.159051 \n", "A4GALT -0.108546 0.019782 -0.071314 \n", "A4GNT -0.801284 -0.709464 -0.933154 \n", "AAAS 0.314384 0.238665 0.325797 \n", "... ... ... ... \n", "ZXDB -0.006245 -0.023256 -0.091842 \n", "ZXDC -0.550889 -0.568556 -0.568459 \n", "ZYX 0.506134 1.124026 1.042041 \n", "ZZEF1 0.199752 -0.259344 -0.171825 \n", "ZZZ3 0.106009 0.207473 0.236588 \n", "\n", " XPR010_YAPC.311_96H \n", "Gene \n", "A1CF -1.206195 \n", "A2M 0.225687 \n", "A4GALT 0.106599 \n", "A4GNT -0.581013 \n", "AAAS 0.263725 \n", "... ... \n", "ZXDB -0.145286 \n", "ZXDC -0.348030 \n", "ZYX 1.012969 \n", "ZZEF1 -0.375506 \n", "ZZZ3 0.064532 \n", "\n", "[12327 rows x 10 columns]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "all_signatures = {}\n", "\n", "all_signatures['cd_all']= pd.concat([\n", " df['CD-coefficient'].rename(b) for (b, df) in batch_signatures['cd'].items()\n", "], axis=1).sort_index().rename_axis('Gene')\n", "all_signatures['limma_all'] = pd.concat([\n", " df['t'].rename(b) for (b, df) in batch_signatures['limma'].items()\n", "], axis=1).sort_index().rename_axis('Gene')\n", "all_signatures['limma-voom_all'] = pd.concat([\n", " df['t'].rename(b) for (b, df) in batch_signatures['limma-voom'].items()\n", "], axis=1).sort_index().rename_axis('Gene')\n", "all_signatures['ranksum_all'] = pd.concat([\n", " df['Statistic'].rename(b) for (b, df) in batch_signatures['ranksum'].items()\n", "], axis=1).sort_index().rename_axis('Gene')\n", "all_signatures['ttest_all'] = pd.concat([\n", " df['Statistic'].rename(b) for (b, df) in batch_signatures['ttest'].items()\n", "], axis=1).sort_index().rename_axis('Gene')\n", "all_signatures['fc_all'] = pd.concat([\n", " df['logFC'].rename(b) for (b, df) in batch_signatures['fc'].items()\n", "], axis=1).sort_index().rename_axis('Gene')\n", "\n", "for k in all_signatures.keys(): \n", " method = k.split('_')[0].upper()\n", " display(Markdown(f\"All {method} batch signatures\"))\n", " display(all_signatures[k])" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Enrichment Analysis Rankings" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# Function to get Enrichr Results\n", "def getEnrichrLibrary(library_name): \n", " ENRICHR_URL = f'https://maayanlab.cloud/Enrichr/geneSetLibrary?mode=json&libraryName={library_name}'\n", " resp = requests.get(ENRICHR_URL)\n", " if not resp.ok: \n", " raise Exception(f\"Error downloading {library_name} library from Enrichr, please try again.\")\n", " return resp.json()[library_name]['terms']\n", "\n", "def getLibraryIter(libdict):\n", " for k,v in libdict.items():\n", " if type(v) == list:\n", " yield k, v\n", " else:\n", " yield k, list(v.keys())\n", "\n", "def enrich(gene_list, lib_json, name): \n", " all_terms = list(lib_json.keys())\n", " termranks = []\n", " enrich_res = enrich_crisp(gene_list, getLibraryIter(lib_json), 20000, False)\n", " enrich_res = [[r[0], r[1].pvalue] for r in enrich_res]\n", " sorted_res = sorted(enrich_res, key=lambda x: x[1])\n", " for i in range(len(sorted_res)): \n", " termranks.append([name, sorted_res[i][0], i])\n", " for t in set(all_terms).difference([x[1] for x in termranks]): \n", " i+=1\n", " termranks.append([name, t, i])\n", " return pd.DataFrame(termranks, columns=['Gene_Set', 'Term', 'Rank'])" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "chea2022 = getEnrichrLibrary('ChEA_2022')" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "# Get gene lists to put into Enrichr\n", "gene_lists = {}\n", "for m in all_signatures.keys():\n", " mname = m.split('_')[0]\n", " gene_lists[mname] = {'up': {}, 'down': {}, 'combined': {}}\n", " for col in all_signatures[m].columns: \n", " gene_lists[mname]['up'][col] = all_signatures[m][col].sort_values(ascending=False).index.tolist()[:100]\n", " gene_lists[mname]['down'][col] = all_signatures[m][col].sort_values(ascending=True).index.tolist()[:100]\n", " gene_lists[mname]['combined'][col] = gene_lists[mname]['up'][col] + gene_lists[mname]['down'][col]" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# Get results\n", "chea2022_results = []\n", "\n", "for m in gene_lists.keys(): \n", " for sig in gene_lists[m]['up'].keys(): \n", " chea2022_results.append(enrich(gene_lists[m]['up'][sig], chea2022, f\"{sig}:{m}:up:ChEA 2022\"))\n", " chea2022_results.append(enrich(gene_lists[m]['down'][sig], chea2022, f\"{sig}:{m}:down:ChEA 2022\"))\n", " chea2022_results.append(enrich(gene_lists[m]['combined'][sig], chea2022, f\"{sig}:{m}:combined:ChEA 2022\"))\n", "\n", "chea2022_df = pd.concat(chea2022_results, axis=0)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "dex_chea2022_df = chea2022_df[chea2022_df['Term'].apply(lambda term: 'NR1I2' in term)]\n", "dex_chea2022_df['Library'] = 'ChEA 2022'" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "def createResultsDf(df):\n", " df['Method'] = df['Gene_Set'].apply(lambda x: x.split(':')[1])\n", " df['Direction'] = df['Gene_Set'].apply(lambda x: x.split(':')[2])\n", " df['Method_Direction'] = df.apply(lambda row: row.Method + ':' + row.Direction, axis=1)\n", " df['TF'] = df['Term'].apply(lambda x: x.split(' ')[0].split('_')[0])\n", " df['Cell'] = df['Gene_Set'].apply(lambda x: x.split(':')[0].split('_')[1])\n", " df['Batch'] = df['Gene_Set'].apply(lambda x: x.split(':')[0])" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "createResultsDf(dex_chea2022_df)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "full_df = dex_chea2022_df\n", "\n", "up_df = full_df[full_df['Direction'] == 'up']\n", "down_df = full_df[full_df['Direction'] == 'down']\n", "combined_df = full_df[full_df['Direction'] == 'combined']" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "Mean rank of NR1I2 terms from ChEA 2022 for up genes from each method." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Rank
Method
ranksum388.5
fc426.0
limma562.1
ttest587.3
limma-voom600.1
cd663.9
\n", "
" ], "text/plain": [ " Rank\n", "Method \n", "ranksum 388.5\n", "fc 426.0\n", "limma 562.1\n", "ttest 587.3\n", "limma-voom 600.1\n", "cd 663.9" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "Mean rank of NR1I2 terms from ChEA 2022 for down genes from each method." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Rank
Method
limma-voom37.3
cd52.8
limma58.5
ttest128.1
fc326.9
ranksum415.8
\n", "
" ], "text/plain": [ " Rank\n", "Method \n", "limma-voom 37.3\n", "cd 52.8\n", "limma 58.5\n", "ttest 128.1\n", "fc 326.9\n", "ranksum 415.8" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/markdown": [ "Mean rank of NR1I2 terms from ChEA 2022 for combined up and down genes from each method." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Rank
Method
limma-voom271.2
limma280.7
cd332.3
fc379.5
ttest404.0
ranksum420.1
\n", "
" ], "text/plain": [ " Rank\n", "Method \n", "limma-voom 271.2\n", "limma 280.7\n", "cd 332.3\n", "fc 379.5\n", "ttest 404.0\n", "ranksum 420.1" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "display(Markdown(f\"Mean rank of {ko_gene} terms from ChEA 2022 for up genes from each method.\"))\n", "display(up_df.groupby(['Method']).mean(numeric_only=True).sort_values(['Rank', 'Method']))\n", "display(Markdown(f\"Mean rank of {ko_gene} terms from ChEA 2022 for down genes from each method.\"))\n", "display(down_df.groupby(['Method']).mean(numeric_only=True).sort_values(['Rank', 'Method']))\n", "display(Markdown(f\"Mean rank of {ko_gene} terms from ChEA 2022 for combined up and down genes from each method.\"))\n", "display(combined_df.groupby(['Method']).mean(numeric_only=True).sort_values(['Rank', 'Method']))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Random results" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "# bootstrap random results\n", "random_arr_chea2022 = []\n", "for i in range(10):\n", " rand_100 = sample(combined_expr_df.index.tolist(), 100)\n", " rand_200 = sample(combined_expr_df.index.tolist(), 200)\n", "\n", " random_arr_chea2022.append(enrich(rand_100, chea2022, 'random:100'))\n", " random_arr_chea2022.append(enrich(rand_200, chea2022, 'random:200'))\n", "\n", "rand_chea2022_df = pd.concat(random_arr_chea2022, axis=0)\n", "rand_chea2022_df['Library'] = 'ChEA 2022'\n", "rand_chea2022_df['TF'] = rand_chea2022_df['Term'].apply(lambda x: x.split(' ')[0])\n", "\n", "rand_df = rand_chea2022_df\n", "rand_df = rand_df[rand_df['TF'].isin(['NR0B1'])]\n", "rand_df['Method'] = 'random'" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Boxplots" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "full_df['Cell'] = full_df['Cell'].apply(lambda x: x.replace('.311', ''))" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB5QUxRaG/9m85JyRJCgqCBKMCIoSlCeKgIAJMJAxCwZEBPWpT1BRDCCgKIoZRBEMgCgqogQBE1kl57hx5p3bQ62zsz0znWa2d/bvc955slNVXf1VdffX1beqPT6fzwduJEACJEACJEACJEACJBCnBDwU3jhtWR4WCZAACZAACZAACZCARoDCy45AAiRAAiRAAiRAAiQQ1wQovHHdvDw4EiABEiABEiABEiABCi/7AAmQAAmQAAmQAAmQQFwToPDGdfPy4EiABEiABEiABEiABCi87AMkQAIkQAIkQAIkQAJxTYDCG9fNy4MjARIgARIgARIgARKg8LIPkAAJkAAJkAAJkAAJxDUBCm9cNy8PjgRIgARIgARIgARIgMLLPkACJEACJEACJEACJBDXBCi8cd28PDgSIAESIAESIAESIAEKL/sACZAACZAACZAACZBAXBOg8MZ18/LgSIAESIAESIAESIAEKLzsAyRAAiRAAiRAAiRAAnFNgMIb183LgyMBEiABEiABEiABEqDwsg+QAAmQAAmQAAmQAAnENQEKb1w3Lw+OBEiABEiABEiABEiAwss+QAIkQAIkQAIkQAIkENcEKLxx3bw8OBIgARIgARIgARIgAQov+wAJkAAJkAAJkAAJkEBcE6DwxnXz8uBIgARIgARIgARIgAQovOwDJEACJEACJEACJEACcU2AwhvXzcuDIwESIAESIAESIAESoPCyD5AACZAACZAACZAACcQ1AQpvXDcvD44ESIAESIAESIAESIDCyz5AAiRAAiRAAiRAAiQQ1wQovHHdvDw4EiABEiABEiABEiABCi/7AAmQAAmQAAmQAAmQQFwToPDGdfPy4EiABEiABEiABEiABCi87AMkQAIkQAIkQAIkQAJxTYDCG9fNy4MjARIgARIgARIgARKg8LIPkAAJkAAJkAAJkAAJxDUBCm9cNy8PjgRIgARIgARIgARIgMLLPkACJEACJEACJEACJBDXBCi8cd28PDgSIAESIAESIAESIIFiL7y5uV54vV4kJydZ6g1erw/7DhzC3v2HULZMSVSuUA6JiQmWymImewSmz/oMVSuXR+eLzw5ZkM/nw9FjGUhMTER6Woq9HUY59/JVv2Pl2vU4cvQ4TqpZBd0uuzDKezRffE5urpYpKTExbObs7Bz8tX03KlUoizKlSoRNK+2zY/c+1KpeGakpyWHT7tl3EMeOZ6Bmtcq2zju5DuzcvQ8+QKtjpP2aJxX9HIePHIPwKFkiHeXLlUZyUvg2iX6N8u/hx5W/4ZffNuKqzm1QvmzpWO8+Zvv7eMFSHDpyDNd2uyTq+/xw3hJkZWXjmq4XR31fRndwPCMLb330BRrWq4U2Zzc1ms1wusysbMj1JC0tJeJ1x3ChDiSU65D4QKmS6Q6UxiKiQcB1wvvu3EV4+H/TtWO95douuP2W7vmOe9L0j/DC9I8w57XH0KBODe23e8e+hE++/D5fOhGfDm1bod81nTUJCrU9NeltTH/nM3w3d1KBG/GdD7+A+Yt+zJd1wpih6NC2pfa3UU9OxWcLl2k3XLVVKFcadw7oqV3Uw21X9X8Qf2z8O2KbnnFKPcx6eXTEdIWdwE4bOFX309v1xbktT8eU/90Tssi/t+9Gx973wO1cX3p9DiZO/SDvOET+5r/1lFOodMtR595/778V/+lwXsR9ycNDj1sf1tK9N3mMbvqMzCw8Mv41zJ7/bd7vjerXwviHh6DeSdXz5dm+cy/uHDMJq9dtyPt7+zZn4fH7bkXJEmn50v6w4lfcPWYS9h04nPf3wTd2xeC+V8Lj8USsuySQ+n/61Q+Y8ubcAueiXFuu7HwBulxyHqpUKmeovMJKJIL1/LQPIX07cBPO8vB363X/MVU1kf9nJr+H+nWqR7yOmSl4wivvYsrMT/DRtHGaDEVzU9ejEulp+PrD5wo83G7Y/A+u6PuAVgW5x8i9xsz27Y9r8P1P63Dt1ZegWuUK+bJeM2AMNm7djh/nvWSmSEtpL7tuBORBZ8lHEy3lj0Ymeehq2+02XNnpAjw68uawuwi836uEcg9tULcmLr/kHHRq1xqlgx6Q5b77wadf46Un7kKbs5tE4xBClhmu3S/ucQd27t6PZZ++VOB6FdNKcmchCbhOeN+ZsxBjxr+WV2G5WFUsXybv389P/RAvvj4bs6c9ipPr1dT+fufDkzB/0TJ0ufRclC1dUhvB++6ntVrnE1F468WHICeR2uQmKRerFWv+wMwPv9T+rCe8i79bhd83bMWzU97XyrmxZydc0PoMnFSzqpZHBEtkussl56JalYpYtuJXfP71cu03kS6Rr1Dbc6++r9VPbes3/YM1v29C09MaoH6ACNSsVkm7ibt9M9sG0TgeI8IrF2O5YNatXQ0jhvSORjVslykjJC073Yo6tariubHDtX5+4OARlCtbynbZ4QpQ595j992Crh3PD5l0w5ZtmpQuWLwcX3+/Co0b1gkpvOqhsd15zXBJmxbY/NcOTXpERL6Y9bT2VkQ2EeNLr7lLE9jru3fAKQ1qY8kPv2jn9dnNG2PqhBF59fn1zy3ofstorYxbr+uCsmVK4f25i7XzZ/hNV2PA9ZEFT/Y39IFn8d3ytVo5V3Y6X5Mw+fvvG/7CR599o+1P76E7qo1gsvAlP6zGwBHjtVzycNCi6SnYu+8gflu/FXJzlm3tIv8AgtFNRs+aXXozpM1eeOx2o9kipoul8KrrkVRq9F190fM/7fLVT+4x0t9lM9pnAguY9NpsvDDtQ20wQh6eAzcKr3HhVdecVs1ORcN6NbWRcbkvytsA2fTu3zPeW4Cly9diaL+rcPopdSP2OycThGv3B/47Rbt+TRgzBGmp7n576CSTolSWa4W3Y7vW2s2uf6/LcNfAnnlMwwnvvDef1F79ypadk4tb7n5KO3GCR6xEdm+668l87aQnvJJg/8HDuKDrMJzf6gy88tTd+fLI66TL2p+T7/WnGoHu0aUdHr67r+G+oJ50x424ydFRFcMVCEooo19GR8okq7rBGG0Dq/UKl8+I8Brdr9njN1qukXSbtm5Hlxvuw6AbumJo/6tCZnG6jkaFV270cuFXWyjhVSM9MtL4zssP54UNqXNk7L3988I0vljyE24bNVF7DXz/8Ou0omWkUc5TOYfnvv543ojwf5+fCbnpBb5tkX11vnYE0lKTsej9ZyOGN7zyxsfag6w8YD77yLACo7gHDx3F48+/qY3eBb9lMtKGsUgjr7I7XXuvJgjz3nwi70Fc7VseDJ544S1Mf2akbnVC9Z94El55mJHBjk/e+G/e62+RkjZXDtMedOTtXDjhDcUoGsJr9HwOTOemEV5VLzMjvKGuOdKnpe+KA8g5OnX8CMdC0Ixy1jtpwrV7pHPezn4jlc3fjRFwrfC+9MSdeHzim9jy904sfO+ZvBuSUeGVw5dXfSMfewU39b5MCzNQm4ygbdu5R/vn2AmvazdUK8Krh/iXXzei16BHIr5aD85rRHhlZO3ZKe9hxS9/ak+Szc9oiEE3dtVkXG0i4TLyNur26/3slq7APzv24MYenbTXLPLqs/vlbbHlnx0aHwmruPCcM3H3wJ6oUa0ypsyci88XL4fsSy40D91xgzaCF2nTE95wbSChJBKjKu0gxyJP8pe2bamFoASO6MtFTy5+Q/pdiRemfQQZ0ZKt00Wtce/gXvled+kJr4zWyetZidcdc3c/7cl7+KiJOPO0Bhh4wxVaWWt/36xx6dGlrcZKXr+LLMhr7bsGXoO2556Z7/B37z0AGa2Suqh2aFi/Fnbs2geROIkBlU1G2V55Yy5Wrv0Th48c10Zsz2t5Ovp0K/gaVO1A6vvw09O1EVRhUv9E2M5tN1+NU08+CdJ3RRi//OYnrX2lbWQ09tpulyIh4d9X+Yrbk6MGaO0srA8fPYZRt9+AyhX1X9EbFV45ZnkQlO2KG+8POcL7/idf46GnpuLugdegX6/OeQyl3nKjlteR8lpSthGPvoy5n3+HtyaN0vpdYH9+8IlXtYdeefiVrVXngZqorPry1XwxfHKuy7HOnDRKa99Q2649B3BRd//IpYwyV69aMWRaOdbAt0NGzkEzfVZ2vGjpSrz+7nz88tsmrR7nnNUYdw/qpfWXcJuEgFxyzV1aP5UQLyObxFzPeHeBFoolI+LSxy48p6kmffLqWLje/tDz2uiwCGHLM0/Rik1PS8X4hwdr//3lkp/x1uwv8fv6rdq/69auro0u9+p6cdiRLTXCK23+xZLl2vkj54Vcvx68/XrtvJH63fHQ80hNTcGTDw7M16dlX48+OwN/b9+jhcSEi8FX1yPpN0+/9A6eeWQoLr3QH4qmHnbUb8HCe/DwUTw/9QONgfRVeWCTEDU5x2R+xntzF2Pym3O1EBLpq+XK+N+8yPHLtUKN8L790kMRr1mST679733sf0Mh7SFl3HZz9wKvxdf9sRnyZlDefEjbyPkj/y0PeUZCGqJxzZX6Szjh6+/M1+ovbzxltFbOZSMhDeGuOfLgNeT+Z7R2GNLvKkjIkmxyjkso0v3Dr0XtGv4BrkjXu0htqs4dmS/x8oyPtTfE0vZyDl7Qugl6XXkxvvnhl7DtLnzl/iF9TW1mr9dG7nNGznOm0SfgWuGVkIADh47g7kdexA09Oua9fjYjvO98vAhjnp5eYIQ3EMWwB57FV9+ucEx45WI4+n/TtAukjNYa3SIJrwjLjbc9rhV3VpNGKFkiVbvYySavHeX1o2zqpiIX4sBYSBExER31+lPSysVVLuByYstNXW548t/yd9nkgi4X+w+njot4GKGEN1QbyAhLRmY2zjy9AcqUKom1v2/S9ievB9+c9GCeyMjNQy6kapPfJT5ObswyiUuOS23BwisjpT0HjNHSzph4v8ZNhQvIDVrCBWQLfC0s/5aLdqkS6Zr0yxY4ai2ydPn1I7UyhU2dWtU0OVbxkyqtGqWV/BLaIhO1ZAKayHu4GFk51rsenqSVJ21S9UR84Og7b8SpDevguiHjNB6y71NOPkl7+JG0wTcXxU14BfILHCkNblSjwhuYT5iHGuFVI8GvPn0vzmlxWl42Gek446J+2s3k0zee0P5+3dBHsWLNn/h5weR8b0xU+EKfq9rjgduu10IOWnS8VXvYe+N5fwym2t784As89twbmpjJG6JQ21ff/IxhDz4HVWbEzn0igdFz0Eyfnfb2PPzvpVnaHjq2a4Wt/+zS+pNsgQ/6enUUjp363Ku1/+vP3Y8WTRuFPRRJP/i+Z7QwFBEmOQe+XfaL9tAm/URCv6RfXz/s0byYZvWwKxNxZKRYREYeTiT/uS1P0yZM/bT6Ty3fgrf/BwnBCrWpa5P6XfqwjAaqB17pmzJ5WD38BIeFyfkoD1gXn98cEx+9LeyxquuRhMQJIwkTk/ADmfAkb+yk7ldf1haD75uQb4RXJh/3uHV0XjicPDip+SHqbaM8nIjwqnqrGNNbrr1c63dm2v/JF97Ca+/O187181s3waYt27XzVc6N96eMzZP6ZSt+Q787/qsds5Js6Y/CXfIaEd5oXHOFgwwoqOucN9cLia+Xza7wShl/bdultV9gWJNyAJk3oPpnuOtdmdIlI7ap7Cuw7eUhUtpArtnSzvLQLvfKcO2urmEqhEjeMpu9XqtOHe4+Z/R6xXQFCbhaeFs3bwyZ3CUXui/fHa+9XjQqvHIhvXbIOO1msPiDZ/NG3YIROCm8MkNTpPTnX/7IJ6FGOl444ZVRj279R2kc5kx/VAvol01JVaCUqpuK3JDuGXSNJhqpKSmaRMgMaRFeOZkfv//WvPgneaiY99UPmkRJ/KZcROTmeNcYiY3+EYvefybkqKA6Nj3hDdcGclOXUVE1u1/Y3TbqOe3hIzA+W13IZDT25j5dtBuAXJjkIigX+9VfTs17fR0ovDL6de3QcdqNS+I/5YIpWzjhFS5jR9yUNzqoXr0Hji7e//hkbQT4nsG90Ldnp7ymlVFIGV1XwisTzmTi2SP39MfVl/tXV5BjlFf3MpJ1VpOGIbuF3PDkuANHNSSxepjqecVF2kitjOjK8QwaOV57SxE4sqm4yTHJK/kzTq2vyWK1yuWREmLlA6eFV8VJSjhDcKyduvmqiT0ykVDO1eB4U3XDExmUUT1ZvaF9jzt140vnLPgW9z02WRst7H1l+5B8X33rU4x/+R3tYcnoyhdmzkGjfVZNoJTzTeROxWhLP5L+dGOPjrg3Qpy5esUqBysja62bnYpTGpyEJo3rFwjTkNfDcp7KjP6RQ3pr/UCOa8zTr2mTgEQiRSbDhTT0HjxWe5AOfHCSPjhrzlfam4Zwqy+oa5OkkxFsETWRgjtHP6+d90+OGojL25+jXT+vH/aYJo9qVFmOT00wltCywLdaeg2trkfLP3sFk9/8WBu1e+3Z+7QRODmHZ0x8QJvsFSy88sbv7dlfadfBKzqcp4V1yXVGYsZlMEDdSyKFNMg5HOmapSbOSftPmzAi722V9E3po+q6E9j3Ao9d/n75df6HbyPC6/Q1V71hkHaUh6XAgRI5n50QXrkPtb5sUL43OuGEV+96J6O/RtpUBqrkGitv09RET7lmz57/jXafkom84do9WHitXK8j9RkjLsE0oQm4WnhlZEwmgckrNjUaE054ZcSidMkS2Lv/YN7op7ySD7dki5PCq04GqfcrT95d4HVcuI4YTnjlVWevgWMgovPgbdfnK0YEW0bGViyYrN3A1E0l+NWwZFIjmcFMVOhHsACoG6+IhghHuE3dYMy0gVxMNm3dpr2ilKXdJPxCXpcGjliHmgCiJkMFyrgSXhlBVQ87wTfHcMIbzEXCC7rdNCqv70l9m1zcT7uwy8hk4PJzjz33Jt784PM84VV9QSZQDbrxSlNLRIUS3lvv+Z/2ei/4Ae77n9fhpjufzBe6o6RL9QsjF0GnhVe1UeADjKqHhDSIQKgHFglTkC14ZrsKP1AjPBKCIw/BwTIkeZXQBd6w9I5bSY2ETQUumySTVH9c5Z8so7ZWZ56qvWI2cw4a7bOyOoxInIiezEZX25Fjx3Hef4ZobyTkzUS4TR5iJr76gbbSTPAmMi+vSNUqAoNGTtBGd2W1j+pV/g3jkP4jfUs9YIUTXhFREdJJj99RINQnUh8LNWlt1boN6DN4rHZ9kzcZIjnyFiVQMOW8vfCq4Zoky0NlYPhOJOEVsZUQFgnd+mf7bi08Q0Z7pb0DhTfw/JaYXw/+DRGa9NpH2gPstAkj0br5qWHFx2j7y+RNYRIYbiHHIq/Vz758UN6bE3Ud0gtdMRvD6+Q1962PvsS4Z2bkewMr9XcihjewTZVIqsGEcMIbfL0z2qZnNW2IM9vfpF3bA+O9g/uWGeE1e73WW9lD7z4X6Tzj70VYeKXDXn3zKO0V2+dv/w8ffLok5CoNwYcpMT4SdxVuc0p4lSzICSMjbYFxqEY6YDjh/fTLH3DP2BfDFiNsalSrlCe8ekv/hBJeGV0RDjLJTibbqU09bBiZSBc4KzqwoqHaQEY6JdwkcFkplU+NNMm/Q9081OihOm5JK8Iro9SySX95duwwbWWAwM2M8G7ftQ+X9LwT3bu01eJ/1b9lqaf/PTQoX7nBwqvETBL54+2aarGZ/+lwfsTJF6GEV5a9ERkJHs1RN5jAMA0rM8WdFl41YhL46lFBU0v4qBHd4H+rdGoUVB3bth17cGmvu7XX8SokRaVVD24y6S3cGqjqNWzwA54aWQtsWBX/b+YcNNpnA1cK0Du5JbTmq3cnGLl8aCP9Mn/gz01/a29yhIVsIohqEp8aRQ9VoOrn4YRXxWVLGfLKV1aFuOj85rjovGYRJ7mGEl6JrxTBD4zpVjIlcy+kDf5t28jXdKlb4AivvBWSGfRq5Q0lmMHCq87vcMCfeGCAthpQpBFePXkJvmap5bX0wozUA6GcH+o6HDwXReppRnidvuaqa17ww4/Twitvg+Q+oWQ2lPDqMTfaps2bNESHXndrbxjkATTUZkZ4nbhe693nDF0QmEiXgOtHeKXWSshkBKBiuTIhhVc9AcoomDxdiWjIk3zgMl/BFJwQXnldIqNGIrsS5xZuEkyofhhOeNVv8kqlZVP/JJLg7bL2Z2vHG27pn1DCK5NmZHJAsPCqWEczwmukDWQpqJvvfkqrr6xC0LRxfe3DATIRS0YMjAivGqULFt5ALvJKTeoeuNqEGeFVo4tKBLb+s1NbCUBGil787x1hhVd+FDmTNaNlEqFaq1kEROItg9egDSwslPDKKGjpUukFJEhPGNwgvDLBRl4lq/jpwGOUYxEWam1h9ao8MERF0qsHB3lLIyPwx45nolXnAQWWKpO06jyUh5FwHx9RK0LI8mcjh/bJq5YsZyj/k231rxu0VSOUZJg5B0OxD+6zaq3YYf276YZcyfkh57WVTZaxk3NMXmPL63sJoVGT/eThTW+TpfpkklqkVRrk/JWHBhWrKWVJzOEbLzwY9k1GqGuTLEV1bpfB+c4r1adF+j9/+2ktVEzeZC39+AVt6clIW7DwqlFSKU9ijeUVdbDwqhhhOZYeQcuYqf3J6K4sS2lFeEO1v17ss1qnfc3Cadogj0z+1LsOGxXeaFxzVax18AohTgqvWlFDwnXUaiNmhNdom0qfl3WZg+eFBPczM8LrxPVa7z4Xqe/z99AEioTwqgXu5eItr9YlrlRvHd7AyUWybJEsXyQSOuul0SHXMLUrvGrGr7xumvL0vZYXqQ8nvOqVtcxSldeO4Ta3CK/UMVQbSEyVTPwIXjhchVDYEV6RhFefvgdPTnpbu0He3Ody3HFrjzxkdoRXTZiSffzwyYv5XqsGj/AGtpH0Xxl9kAlKcowS5iAzw0NtoYRXSWHwxK7g0Asp1w3CO2v2V3hkwusFYmrVKG3gRBQlKB+8OlZbg1dtapJU4Ex6Ff4Q3AZqRDnSBC6ZGNb52nu1Xai5AcFtIX1HXqUq4TVzDhoVXhUjHjypz+gNS5Ztk4e5UK/31cdL1Dq06tXwj/Nk0llqyN0o4Q0ccdVLLPG3Es8r1xzhFSm2NtS1SfXfwMnJsj/VnjLKK6PvKuTBCJ9g4ZU8suZ6vdrV8tZHDxbecBMiQ4mP3oogRttfxflLbLFaDUP2I+16TpfBqFyxrBY6pQYq9EJ1jApvNK65qj2DH2idEl65bkosu4zMD+l7Zd569GaE12ibqvuC3mTYwLZXwqvX7sExvE5crym8Rs5242mKhPDK4QTPpI8kvJJHvTKSp8PJT92t+/lgq8IrEwYef+5NbVRJTpLnH73N1ocBwgmvWgtYREtefwV+OU5CPhYtXYGLLzhLa3U3CW+oNlCT5F4dfy/OOcs/e194yoxlmWlvR3jVl9ZkhKvPkLFaHKCM4slonmx2hFfyq4ta4EoAMmFMLszy+l09dEl/bXJq/Xx9Qq04EGmWeSjhleWVpr79qRZeIaPOapOVCYRb4OoPbhBe9TpRzo/pz47Mm6CoJo2NuuMGbSkn2VTIQOADitzwZEKerEYiK4WocBX1mi8wBldGBLtcP1Jb+UNGASN9VlfNjpc42aceGljga1nBwmvmHDQqPOpNlPCZ9szIfHXWll1buyHsx2skhEHeiIwc1ke7BgVusnpC/zuf1ET07Rcf0iaxqRF3vVfj8hAiDNWsdwkPClxFQ5Ut7STLBwbyVatjRAohC3VtUu0ZuK6y7E/FTat964XGhLrV6QlvcNpg4ZXflaQEx3fLb8JSRnclXE3kWZZI01sRxGj7q/1LiISESqhN3gjdMfr5vNFGmWgnr9tlUEUYqEmn8vcr+z1oaFmyaFxz1cNo8IOIOi47k9ZkZFfeIsjAiIy4T3tmhPZGUDYzwmumTdWouqz+Eng+ySRpif2W1THCtXuw8DpxvabwGpdZIymLjPDKza/PkHF5S20ZEd7Ai756LS1Q5Ea88NsVGp833l+gSZGMAsoJJaNLanmfcF9a+/mXP7Xle2STWccyESJ4k/VW1eePIzVGpGXJZEKUjCJKHWVNU1n+R1ZpWPzdSu21r4qFdJvw6rWBGvmT0ff/XCozoaGtXqA+teyE8ApvuYlfM3CMFv/11KhB2uthu8Irctv3dv/yQPLgIeuIBn5aWgmv3GCk/8gXnkQijh47jo/mf6v130gjeqGEVy68MnFHNhnxaFC3Br7/+Vfti1HSzz6YOjbfcm5mP2+qYnjlwi4jYcHbBa2bagxlkpGsXSyb3PQlNEEm5skma1aqj7/Iv9UDpUi+xHrK6KrcyKQfSziKWplA2qVDL/+X1mR1AlnBQ17DypJQwaMuik/el9ZKl8SHn32jsQ0cCQp3zkmb3TD8ce2Vv5QjsXuNGtTW+qLUUSbAyQofgXJo9Bw0KjyBfKT95BpVskQ6flu/RVsnV+IKg+OUA49JrfktfxNGIrXVq1TA2j82Y+mPazSWEgYlD0KyyWQoGdmWv0tYjrSHjOaqmN/A2GcJhxD+8or3tEZ1sG3HXm3VABWKIp9dllAxkS55cyEPGvJqW61BrcdeXZtkAEI++y6xteprenKOyGoewaPVsjqCtFGkkbfg/VkVXunXPQf4P5ctD2NnnFoPsu62LAEmDyhKutX1X64Bsna4LHd2eqO62gOK0fYPvKdJO7U950ztoVkt8xUY6qAmLwkHmUQpfVRW1pDNyLJk0bjmyjHLHAfpTxJCJPdOWcZLQuRkMyO86ktr8sEXGSFW4TJ6c2LMCq/RNg28tsvbVHm4+X3jX5g1e6G2BrDcd8O1e7DwOnG9pvBGMidzv7tPeE+snasnBSoOSQ4xcHku9fQq8YBqaRSFQU4eeXKTk1LW8ZTVHtTrST1Uga/VZHUI9alglVatWKBGgMLhjvR54cC8agmTUJ91lYuj3ASfevHtfJ8klpv1NV0v0tYJlE0uliIUejPj1YiSzISWp3K1qSfywCW05DcVO20khtdMG/S8oh1GPzUtbxKJ7DknuH8AACAASURBVEskSz6sINL1/GO34aLzmmvVC3XzENGSp+0v3hmv3eRlC/XhCbkQieDIq+7TGtXVPtsri9CrBcJDcVExvMEjGCJ8b77/uTZBqHbNKlpdZTROHlpUjKFMspGPWaj1eaV+0la333J1xImU6gItsZ3q4xiqreShYMS4l/IeDuTv8up53Iib88mGpRHeE+deqD6t5E+9itdLN3Hc8Ly3DfK7iKxMGBKBVJuMHEo6tbye+rssQTb8wefyHZuI2RMPDtDWMQ7cpM3k/Ax82JDRYVmwP9IMflWOvFX44JOvtSWgAttJfpfR5Cs7t9FEWEmc0XPQTJ+VV67TZs3D1Lfm5TsWYSRtf0WH0J94FoGV68bcL77LW7tXHZuKjxdpkyUJ1SZ9+umXZ2nr6QZuEl4iy9epj37IklkSfy7hY6rvygoaMmolb7UCuUtdZZm8cJ9SD7w2idyrNa5V/3105C26E33VqLR6YA3VN4P/rq5HP81/JeTHMNR1T45bPiGtNnmg+u/EmdqIbuAmfWHE0D559RTRFxaq76g5EGbaXwRvzPjpeZxlf3IP+9/owWhy6r+fLJZ0MuobGDct56O0vd5E1mAe0tejcc2VcBR5CyMPh6qfyOe+5T5kZC16tU57YL+VUA6ZgC285cFIPpgUuKn1vQPDnyJd74y2qVxX5N4ig2BqkxHmwLcoodo9WHglv93rtd59zug5wHQFCbhOeNlIkQnIq8dde/Zra17K6zUznwCOXHrsUsjNV0ZPKlYoU+CVcuxq4cyeQl1wpa3kZiAX7SqVykd81W60NvIgJ+xqVq9cQAaNlhHLdCK+W/7eocljuFFAqZOED8hX62SEJfhmF1hnEdBtO/dq8lW3VjXdkCWjxyj1k9eWstScvD0JtVaxKs/pc1CORdpUxEZGDdXHDIzWX8RZ+oNMupNlyNTIeaj8IkCyjqqERMn+5AuEeptMKDt0+CiqSt9NTtKSSF1l9Er+J6OLFcuXNfyQofahzn2Z4Bv4JbvAOkgd5VW+vEX5dvbEiG1ilJXRdMJU+ld6agoqVyqX76t+qgxhIcIrH+YItwZxpH3Kw4s88AnLKpX0v4QoZQg3OT9kgmHgg0yk8oO5O3nNlT4kdfd6vdo5G7hco9F6xSqdkTaVusj5vW//IVSsUFb3+mq23Yva9TpW7RHr/VB4Y02c+yvSBOTCPmf+t2jZ7FTUqFpRWzVg9mffaF9LCp71X6QPlJUngUImoGJZB93QVVvNhRsJkAAJ2CFA4bVDj3mLHYHgiTQKgLzOffqhwShbJvKSScUOGg+YBCwQUBPIvpj1tKWlHi3skllIgATimACFN44bl4fmPAGZhCfSu3HrNu3TpPIas36dGnmfI3Z+jyyRBIofATnPJD61TOmSBT4eU/xo8IhJgAScIEDhdYIiyyABEiABEiABEiABEnAtAQqva5uGFSMBEiABEiABEiABEnCCAIXXCYosgwRIgARIgARIgARIwLUEKLyubRpWjARIgARIgARIgARIwAkCFF4nKLIMEiABEiABEiABEiAB1xKg8Lq2aVgxEiABEiABEiABEiABJwhQeJ2gyDJIgARIgARIgARIgARcS4DC69qmYcVIgARIgARIgARIgAScIEDhdYIiyyABEiABEiABEiABEnAtAQqva5uGFSMBEiABEiABEiABEnCCAIXXCYosgwRIgARIgARIgARIwLUEKLyubRpWjARIgARIgARIgARIwAkCFF4nKLIMEiABEiABEiABEiAB1xKg8Lq2aVgxEiABEiABEiABEiABJwhQeJ2gyDJIgARIgARIgARIgARcS4DC69qmYcVIgARIgARIgARIgAScIEDhdYIiyyABEiABEiABEiABEnAtAQqva5uGFSMBEiABEiABEiABEnCCAIXXCYosgwRIgARIgARIgARIwLUEKLyubRpWjARIgARIgARIgARIwAkCFF4nKLIMEiABEiABEiABEiAB1xKg8Lq2aVgxEiABEiABEiABEiABJwhQeJ2gyDJIgARIgARIgARIgARcS4DC69qmYcVIgARIgARIgARIgAScIEDhdYIiyyABEiABEiABEiABEnAtAQqva5uGFSMBEiABEiABEiABEnCCAIXXCYosgwRIgARIgARIgARIwLUEKLyubRpWjARIgARIgARIgARIwAkCFF4nKLIMEiABEiABEiABEiAB1xKg8Lq2aVgxEiABEiABEiABEiABJwhQeJ2gyDJIgARIgARIgARIgARcS4DC69qmYcVIgARIgARIgARIgAScIEDhdYIiyyABEiABEiABEiABEnAtAQqva5uGFSMBEiABEiABEiABEnCCAIXXCYosgwRIgARIgARIgARIwLUEKLyubRpWjARIgARIgARIgARIwAkCFF4nKLIMEiABEiABEiABEiAB1xKg8Lq2aVgxEiABEiABEiABEiABJwhQeJ2gyDJIgARIgARIgARIgARcS4DC69qmYcVIgARIgARIgARIgAScIEDhdYIiyyABEiABEiABEiABEnAtAQqva5uGFSMBEiABEiABEiABEnCCAIXXCYosgwRIgARIgARIgARIwLUEKLyubRpWjARIgARIgARIgARIwAkCFF4nKLIMEiABEiABEiABEiAB1xKg8Lq2aVgxEiABEiABEiABEiABJwhQeG1S3Lb3uM0SmJ0ESIAESIAESIAEwhOoUTGdiGwQoPDagCdZKbw2ATI7CZAACZAACZBARAIU3oiIwiag8NrjR+G1yY/ZSYAESIAESIAEIhOg8EZmFC4FhdcePwqvTX7MTgIkQAIkQAIkEJkAhTcyIwqvPUZhczOkIYpwWTQJkAAJkAAJkIBGgMJrryNwhNceP47w2uTH7CRAAiRAAiRAApEJUHgjM+IIrz1GHOGNIj8WTQIkQAIkQAIkEJkAhTcyIwqvPUYU3ijyY9EkQAIkQAIkQAKRCVB4IzOi8NpjROGNIj8WTQIkQAIkQAIkEJkAhTcyIwqvPUYU3ijyY9EkQAIkQAIkQAKRCVB4IzOi8NpjROGNIj8WTQIkQAIkQAIkEJkAhTcyIwqvPUYU3ijyY9EkQAIkYIXAkQPA2u9zdLOWrZiIU1t5rBTLPCTgWgIUXntNw2XJ7PHjsmQ2+TE7CZAACVghsGOzD+8+l62btVZDD64alGylWOYhAdcSoPDaaxoKrz1+FF6b/JidBEiABKwQCBzh/W25D4f2+XBKSw/KVvCAI7xWiPrzjJ6RHjLzmOuPWy+YOW0ToPDaQ0jhtcePwmuTH7OTAAmQgF0CH07Kwd/rvbhyUBJqN0ywW1yxzk/hdW/zU3jttQ2F1x4/Cq9NfsxOAiRAAnYJUHjtEiyYf+GqJCxanYx2TbNx0Zn6sdLO75UlhiNA4bXXPyi89vhReG3yY3YSIAESsEuAwmuXIIXXeYLOl0jhtceUwmuPH4XXJj9mJwESIAG7BCi8dgkWL+HdtDMBHl/BY05L8aFaBZ0fnMdrqUQKryVseZkovPb4UXht8mN2EiABErBLgMJrl2DxEt5Qccp1q3rRr0Om8zAdKpHCaw8khdcePwqvTX7MTgIkQAJ2CVB47RIsXsI7bUGqdsA79iUgIxuoWt6HdBndLe9F51b6S905T9h8iRRe88wCc1B47fGj8Nrkx+wkQAIkYJcAhdcuwcIT3hUbk7ByfaLuATQ7ORfN60dvwpyI7+adCejbIRP1qnqdh+hwiRRee0ApvPb4UXht8mN2EiABErBLgMJrl2DhCa9aDULvCKK9QgSF1/l+4+YSKbw2W2fbXi7EbRMhs5MACZCALQIUXlv4dDPHalmy/Uc9OHjEv3bytAUp2v/365Cl/X/ZUl6ULxm9SWQUXuf7jZtLpPDabB0Kr02AzE4CJEACNglQeG0C1MkeK+EN3LWaTObkF932HxGh9ugCmvdTCnbs86BTy2xUL68f0lC1ghfpfg8v9I0hDfaagMJrjx9DGmzyY3YSIAESMEJg73Yg46j+aN+S2TnY/Y8PbbomonJN/S+tVa6VgJS06I0WGjmGopQmXoR34epkLFqVZBm9m+J7KbyWm1HLSOG1x4/Ca5Mfs5MACZCAEQJzJmdjy6/WhbXH8GRUq6s/0mdk/8UtTbwJb2oytJUYjG5HjnuQ44WrJrRReI22nn46Cq89fhRem/yYnQRIgASMEFDCm14SSEo2ksOf5thhH3JzPaDwGmcmKeNNeOtW80LW2TW6ycoRB456KLxGgRWBdBRem43EGF6bAJmdBEiABAwQmDMlB1vWedGoeQLKVTaQ4USSdcu8OHIA6D4sGdXrcYTXKDkKL4XXaF8pKukovDZbisJrEyCzk0AxIHDwqAf7T8xEDz7c8qW8KBvFmejxgpfCG9uWjDfhtUqPMbxWybkvH4XXZptQeG0CZHYSKAYElqxJxhcr9CfOXNI8B23OcO/XnYw2T9bDHyN3wTrd5CmPX4XEto2MFqWbjsJrC5/pzBRePzIKr+mu49oMFF6bTUPhtQmQ2UmgGBBYvSkJy//wf01qyy7/KgJ1qvjjCVs2ykXTetH7mlSs8FJ4Y0U6NvuJN+FlDG9s+o2b90Lhtdk6FF6bAJmdBIoZgWisNeomhL7Ne5DR51V46lRE2ls3O1a14jjCKx9lOBRiDdkypXy2P8qweWei9mldvW3TjgTtN5noVa+a/mQv+a1u1VxTbbwlxP6kkKkLUrWy+nfIDFlmHRMTz6QQtSwZhddUM8VlYgqvzWal8NoEyOwkUMwIUHitNbgbhPenP5Nw6Jh+/VufmouSqcaXvdIrZcXGpHwfSVDSqZdWT0TlU7xmtnCf9TVSjpVP/6r+b6R8vTRmP0pB4bVKOv7yUXhttimF1yZAZieBYkaAwmutwd0gvC9/kopt+/RHRIdckYkqZY0ve6VHYer81LyQFyuUTMvgqiQsWp2sTZosV8p43Q8cSYBMxLQjvGYnasr+ZDN9jCc+PMERXis9Kr7yUHhttieF1yZAZieBYkaAwmutwd0gvGqEd/eBBKzdmohKZbw4o67/lb4TI7xKeKuW8yLNxGjxlp3++HDTMnhCeOtUzUU9E6ECm3YmQPZpR3jNjkaLmFs6RgqvtRMuDnNReG02KoXXJkBmJ4FiRoDCa63B3SC8qubrtiZi1uIUNK6di17tsqwdkE4uJbzNGuSiXEnjI66WZZDCG7Lt+OEJx7q1awqi8NpsCgqvTYDMTgLFjACF11qDU3hDc6PwhmajYnjLlfKhnIn1rnfsT0BGFpcls3a2ujMXhddmu1B4bQJkdhIoZgQovNYanMJL4bUT0mCt11F4rXJzYz4Kr81WofDaBMjsJFDMCFB4rTU4hZfCa0V4Jd5Yll/T21asT9Qm351ZPxflS+uvsNGsfg7Kl7K3+oa1Hl8wV42K6U4VVSzLofDabHYKr02AzE4CxYwAhddag1N4KbxWhDdcb5u2IFVba9hNX1MLV18Kr7Vrh8pF4bXHDxRemwCZnQSKGYFYCG/GcR8mP6C/JmvJ0kD/MSlRo14cPjzBSWtFZ5UGNwjv7A/exfr1f+hWpXvPPqhTt56h85HCawhTyEQUXnv8KLw2+TE7CRQ3AhReay3OEV6O8BbVEd7+1/fE/HlzdRvw7ffnok3biw2dFBReQ5govPYwhc7NEd5okWW5JBCfBGIhvIHkFr2fg1++9aJttyQ0vUD/owlOkuYIr3WaXJbMeal30wjvju3bMHPGNFSrVh19buivVY0jvNbPF7M5OcJrllhQegqvTYDMTgLFjACF11qDc4TXeRlUnxaO5w9P6FGTiWweHzDvpxTs2OdBp5bZqF7ei7QUH6pViN4EtRU/L0eXDheiWfMW+OTzJaZPBI7wmkaWLwOF1x4/hjTY5MfsJFDcCFB4rbU4hZfCKwTMfk1Oj5o6B4N/q1vVi34dMq11UAO5KLwGIEUxSbET3qPHMnDoyDFUrVQeCQn+b3PL5vX6sGvvflSqUBZJiQWXMDl85BhycnNRvmzpfM3BEd4o9k4WTQJxSIDCa61RKbwUXqeEV1Zn0Nuqlfeicyv9yZ7Wem3+XBReJyhaL6PYCO/i71bhiRdmYsvfOzVaH04dh0b1a2n/Lb/d/ciLOHY8Q/v36Lv6oud/2mn/LX8bMe5lfPXtCu3fTU9rgInjhmtiLBuF13rnY04SiFcCY2emIyfX2tElJwEP9j5uLbNOLsbwenHkANB9WDKq1/t3kMMOYK7SYH+VhnpVjX86WdpKwhCcEl47bW8nL4XXDj37eYuF8C5auhJD7n8Gt1zbBV07nq+N0qampiA9LQXHM7Jw4VXDMbT/Vbi22yWQtLeNmoj5bz2FWtUrY8rMT/Dux4swY+IDWvpBIyeg3knVMfZef8A5hdd+J2QJJBBvBCi8r8JTpyLS3rrZsablCG9olEXx08JWO4YTIQ1W9203H4XXLkF7+eNeeH0+H7rdNAqnnHwS/nv/rQVoyeju4PsmYMWCyUhJSdZ+v+y6EZr8XtvtUnS/ZTQ6tmulybJs8xctw50PT8KahdPg8XgovPb6H3OTQFwSUMLb5oxsJBpcGEFGhL9ZmwyO8Op3CQpvfAmvTJQzs2058bU0Cq8ZakwbSCDuhXffgcNoc+UwXHx+c2Tn5ODosUyc2+I09O99GdJSU/DOx4swfdY8fPrGE3lchj3wLOrWro67BvZEq84DMW7ETZr0yrbuj83ocevDWPrxCyhbuiSFl+cTCZBAAQIUXo7wWjktuCyZ81JvpR2ilYcjvNEia6zcuBfeX//coo3S9ujSDue1OgOHDh/FEy+8hcvbn4OH7+6rhSx8tnAZ3ps8Jo+YxPOWKpGO0XfdiDMu6odJj9+Btueeqf2+YfM/uKLvA/hi1tOoXrUiDh+PXoC7sSZkKhIgAbcRGDElGdm5QPvmuaZGeL9amYiUJOC/Nzl3XZn/VhZ+WpyDDr1S0LJdUtRR5W7cjb3dXkFivUqo+OEAx/Y364VMbPglF6e1TESFqsZjcVctzcXh/T7ccE8aajUwONweodarN3kwfUESmtT1oV/HHMeO8YU5Sdiw3YNWp3hRvpTx5bEW/OSfaD1+gLl+89nyBEje+tW9OLmG8f2t3+bBxu0J6NAiF51amovFvfNl/5tUyWtms3qMZvYR7bTLl/+Iiy88Hy1atMTCJUtN7650up8dN2sEio3wLvloIiqU86+w8MGnX+PxiTOx7NMX8e7cxRFHeB8deTM6tG2p5Q0e4T18zLmLnbUmZC4SIAG3ERjxatIJ4fWaFN4Ev/D2d+66Mv/tTL/wXpMaO+G9+mW/8H4w0LGmmfVCBjasEeFNMim8OX7hvTvdWeH9PNEvvB3MiVs4IC/MScSGHSK8PpPC6xf58bea6zef/STCm4D61X0WhNeDDi286NTCpPC+4n/okrxmNqmnlWM0s49op9WEt+15fuH9+jvTuytdIvoPrKYrVYQyxL3wHjx8FOf9ZwjemjRKW2FBtnfmLMSY8a/hl6+mYckPq7UY3pWfT0GyBM8B6Nj7HtzQo0NeDG+ni1rj5j6Xa78xhrcI9W5WlQQKiQBDGhjSYKXrMaQhNDWrE/OstEO08jCkIVpkjZUb98IrGAaOeFpbZ/eZR4Ziz75DuOeRF7VwBPn3seOZaNV5AEYM6Y0+Oqs0TH5zLt6bu1hbpaFEeioGjhjPVRqM9S2mIoFiS4DCS+G10vkpvBTecP2GX1qzclb9m6dYCO/f23fj9oeeh8TzynZ288Z4ctTAvLV0ZY1dmaimtgdvvx69r2yv/VM+VCExvV9/v0r79xmn1MPER29DlUrltH9zWTJ7HZC5SSAeCVB4KbxW+jWFl8JL4bVy5hjLUyyEV6HYtecAkpIS82J5AxHl5nqxY/c+VKlYLi+0IfB3CY3Izs7Jk2T1G4XXWEdjKhIoTgQovBReK/2dwkvhpfBaOXOM5SlWwmsMiblUFF5zvJiaBIoDAQovhddKPy8s4U1L8SHNxAIAGdlARpYH7Zpm46IzzU2UU5/WlrxmNsbwAgxpMNNjCqal8Nrjx5AGm/yYnQTikUC8C69v/zFkPvCRftNlZsP36w4gNRmextV00yScVB4pIzubanp+eML50c+Fq5KgRNJUY5xITOE1R42T1szxcjo1hdcmUY7w2gTI7CQQhwTiXnh3HkLGVS9abrmERlWROr2vqfwU3ugJb9VyXlSvaHwd3u17Pdh5IIEjvKZ6MEDhNQnM4eQUXptAKbw2ATI7CcQhgWIjvGnJSLzoFOMteCgDud+uB4VXH1lhhTTIZ37rVTW+Lu6mnQmQT/1yhNd415eUFF5zvJxOTeG1SZTCaxMgs5NAHBKIe+HdfhAZV78ET8lUJF7TwnAL+vYcQe6c1fA0rIq01zjCGwyOwuv8KLbhzhmDhBTeGEAOswsKr03+FF6bAJmdBOKQAIVXv1EpvOE7O4WXwhuuh3DSmr2bBYXXHj9OWrPJj9lJIB4JUHgpvFb6dXES3ub1za3usGKj/0uoY64/bgVtzPLs2b0Lr02brLu/Hdu3YeaMaahWrTr63NBfN03t2iehZ+/rdX+j8NprRgqvPX4UXpv8mJ0E4pEAhZfCa6VfFyfhtcKnKAjvb7+uRfs2raweHs49vw3emz2fwmuZYOiMFF6bUBnSYBMgs5NAHBKg8FJ4rXTr4iC8coyhti27ErSf6lQJPYGuf8dMK2hjlkcJb3qJEmjWzHh8+8GDB7Bu7S8U3ii2FIXXJlwKr02AzE4CcUiAwkvhtdKti4PwhuOiPkrh9rCFcMeghLdipUq4sd+thrvBX1u34N1Zb1J4DRMzn5DCa55ZvhwUXpsAmZ0E4pAAhZfCa6VbK+E9uYYXpdOMLxNmNb5VfXgilsuSUXj1CVB4rZwx5vJQeM3xKpCawmsTILOTQBwSoPBSeK10ayW8VvJKHrMjoxReq6RD5+MIr/NMnSqRwmuTJIXXJkBmJ4E4JEDhpfBa6dZKeEum+ZCUaLyEg0c9WmIKr3Fm0UpJ4Y0WWfvlUnhtMqTw2gTI7CQQhwQovBReK92aMbzplsTdCuto5aHwRous/XIpvDYZUnhtAmR2EohDAhReCq+Vbk3hpfByWTIrZ46xPBReY5xCpqLw2gTI7CQQhwQovBReK92awkvhpfBaOXOM5aHwGuNE4bXJidlJoDgRoPBSeK30dwovhZfCa+XMMZaHwmuME4XXJidmJ4HiRIDCS+G10t8LS3it1FXytGuajYvONPeJ4HD74jq8XIfXal80ko/Ca4RSmDQMabAJkNlJIA4JUHgpvFa6NYWXI7wc4bVy5hjLQ+E1xokjvDY5xWP23X97kVrCgzIV/EsCcSMBRYDCS+G1cjbEWnjD1VGt0ev0KC5HePUJ8MMTVs4Yc3kovOZ4FUjNEV6bAItg9r/Xe/HptFxkHvdpta9UMwGX90uk+BbBtoxWlSm8FF4rfYvCyxFejvBaOXOM5aHwGuPEEV6bnOIp+/SxWTi8P/8R1Tvdgy43JcfTYcbsWDKPA3u3+R8egrfkNKByzaI3gk7hpfBaOYEovBReCq+VM8dYHgqvMU4UXpuc4in7xDuzChxOzQYedBtC4bXSzv+s9+GDSdm6WWvU9+DqoUWPK4WXwmvlXKDwUngpvFbOHGN5KLzGOFF4bXKKZnbfHzuR/c5PwPaDQPWySO7ZAp5GVaO2Swqvs2h3/+PD1x/6Z3rv3uZFdoYHFasDqekeVKrpQdurkpzdYQxKo/BSeK10MwovhZfCa+XMMZaHwmuME4XXJqdoZfdtO4jMvtPhO5KRtwtPqTSkvj8AntJpUdnt3FezsWlt/lfwrTsm4uyOiVHZX3Eq9P3ns7Ftow/dBiej5slFL5RBtRWFl8Jr5byl8FJ4KbxWzhxjeSi8xjhReG1yilb2nLeXI/u5LwsUn/LAZUi8vElUdptx3IdVX3vxz3qvVn7jVglo3Jqy6wRsCm8ykpOAB3sfdwKnVsai93Pwy7detO2WhKYXJDhSrm/7QWRc/RI8JVOReE0Lw2X69hxB7pzV8DSsirTX+hrOJwnnTMnBlnVeNGqegHKVjWddt8yLIweA7sOSUb2eMw9R67YmYtbiFDSunYte7QqGOBmvXf6UFF4KL4XX6tkTOR+FNzKjsCm4SoNNgDazZ7/6DXJe/bZAKcnD2yOpV0ubpTN7rAlQeCm8ofochTf02bhotT/Ofcz1zj0ocVkya1e/335di/ZtWqFipUq4sd+thgvhsmSGUVlOSOG1jM6fkcJrE6DN7Llf/4mskR8UKCVtet+oxvHarDazhyBA4aXwUngT0KxBLsqV9L9BMrJReI1Qik0aCm9sOFvZC4XXCrWAPBRemwAdyJ79zBfIkUlrJ7akni2QfPslDpSsX4R8cOLT6bk4tM8fx1urQQI6909EWrozr0ujVvEiUDCFl8JL4aXwOjlSHevLHoU31sSN74/Ca5yVbkoKr02ADmX3Hc6A989dSGhYJWqT1VRV9dbhPbVVAi7tXfRWE9DDnzF4Jnwr/9JtmdTn+yDhrNoOtVrBYii8FF4KbwJKpfmQZGJawIGj/odtJ0WRIQ3WLnMUXmvcYpGLwmuTMoXXJsAimF1vWTL52lrvuyi8dpszVsK7bEHo18WtO9if2BXrVRq+mZOLFYtyLeNvf00iTjvbuGEVyqS1ydnY8qsP6SWBJBNLMx877ENurgc9hiejWl1n3sJEe9Ka1Yak8Fol51w+Cq9zLJ0uicJrkyiF1ybAIpi9uKzD6/35L2QOnQlPs9pIm9QnJi0VK+HVa0N1gMPGp9g+VgqvPkInVmmw2jhFYZWGHfsTkJGlL+XTFvj7Zb8OoVeFqFvV+kNPMFeO8FrraRRea9xikYvCa5MyhdcmwCKY/YMXsvHPhvhfhzdawvvrj94Cn2ZW3eDXZf7YaFnqrUxF/ZFWJ0Zgf/jM/6GLv9f7tHV/5YtutU6s+3t2d23WuwAAIABJREFUJ/sj9YUlvLUbeVDdxCjmxjU+7NnmQ1Ea4a19cgJKlTN+4dj0mxcZR1AkRnjDHdXoGbFdsovCa7yPBaak8FrjFotcFF6blCm8NgEWwewiZD/Mz4V8ISwtHah5cgLOvDAhKpPW9m73YeZT+p/drVLLg2vuNPFu1yTraAmvGsU1WZ285E6MwKrCRHwlvEEk2gnRVeVSeKM3whvP6/BSeGMr9VavQeHyUXijQdWZMim8NjlSeG0CZPawBOJZeCvVAFJMfAxv20Y/KgpvwS6jYnjjeoS3GHx4gsJL4eWHJ6InBRRem2wpvDYBMrthAp9MzcHGNV5c1i8JDZrYn1gVacfRHuFt3DIBpStEqsW/v6uJZhReCm8svrT25z8JeOOrVOMdNChlk7q56N7Gua+wMaTBclPENCNHeGOK29TOKLymcBVMTOG1CZDZDROg8PpXVqDwUngpvIYvG5YTxiqGd/PORGze6X+Al33KdtGZ/hj7ulW9cHIinmUYJjJSeE3AinFSCq9N4BRemwCZ3TABCi+FN1RnYUhD6NNo3TIvjhwAzK7SoEZ4K5T2oWk9v4AZ2XbuT8CvfyWCI7xGaPklV30pLjhHu6bZefJrrLTCT0XhLfw2CFUDCq/NtqHw2gTI7IYJUHgpvBReL2I1aY3C6xfRaEunjPBu2qG/FFu9aj6O8Aac9DUq+mOcuVkjQOG1xi0vF4XXJkBmN0yAwkvhpfBSeJ38uES4i0+sQhoMXwCLSEKO8Lq3oSi8NtuGwmsTILMbJkDhpfC6TXgNd96ghJ6GVZH2Wl9T2efEeJUGjvDGZoTXVCcoAokpvO5tJAqvzbah8NoEyOyGCVB4KbwUXo7wcoTX8CWzUBJSeAsFu6GdUngNYQqdiMJrEyCzGyZA4bUmvIf2+3Bknz7mdctyIV9+ky+7ndY6UTdRqQpAmfL6MYahGo8fntAn48SnhRnDe9zwNcNKQjWBbNOOBG31BFkpoV41/7kn8bzcwhOg8Lq3h1B4bbYNhdcmQGY3TIDCa0141dfUDIMOSmjlK2wUXgqvE6s0rNiYhJXr/Q9iaukuEVDZmp2ci+b1ja8eYbT/q/V+9dLHanTZaF3dmI7C68ZW8deJwmuzbSi8NgEyu2ECFF57wpuS5kNqmvGR2swMH7IyPJY+O0zhpfA6IbyFsWSXWgtXrwXV+riGL1rFMCGF172NTuG12TYUXpsAmd0wAQqvPeGtUR+odbLxL9T9vd4L+ZwxR3gLdlHf9oPIuPoleEqmIvGaFob7MEMaDKPSEu4/6sHBI/p9tmwpL8qX9JkrkKmjToDCG3XElndA4bWMzp+RwmsTILPnI/Dj515s/T1Xl8q+HT5kHAPKVwPSS+iPVF7QNQlVaxsfxQyHP14+LaxCGii8BVt74xof9mzzof01iTjtbP0YZr0+QuENfeZE68MTvFQWDQIUXve2E4XXZttQeG0CZPZ8BObPyMYfK6yP2nQdkIyTTqHwBkKl8IY+ySi8odm4bVkyXiqLBgEKr3vbicJrs20ovDYBMruu8MpoZNkKxl+/b/3Di6OHAApvwQ5F4aXwxsOnhXmpLBoEKLzubScKr822ofDaBMjs+Qh8NiMHf67wokETDypWNz5S+/tPPhzc68MVtyahzqnGRZkhDaEJMIY3NBuGNDCkgZdufQIUXvf2DAqvzbah8NoEyOwUXoN9YNkCTloLheqbOblYsSgXtRt5UL2u8QclhjQwpMHg6cdkBglQeA2CKoRkhSq8ubleJCR44PEYv0AXAqOwu6Twuq1FinZ9OMIbuv0ovKHZUHhDs1m3zAuGNBTt62JRqj2F172tFXXhfXv2V7iy0wVIS03JRyEzKxv3PfYKRt/VF2VLlyx0Ql6vD7v27kelCmWRlFhwtvLhI8eQk5uL8mVL56srhbfQmy6uKkDhjZ7wWu0oXJasIDmGNITuTVylweqZFh/5KLzubceoC+/wUc8hIyMLz40bnie9R49l4LaHJuK75WvxwycvolTJ9JgQysrKxk13PYXjGZl4b/KYvH0u/m4V7n7kRRw7nqH9TSS853/aaf8tfxsx7mV89e0K7d9NT2uAieOGa2IsG4U3Jk1XbHZC4aXwJicBD/Y29/lYjvA6P8K7flsiZnyZgtLpPjSo4Q+nMbLtOwxs3ZWIJnVz0L0NP8VrhFk8paHwurc1oy68v2/4C9cNfRQtmjbEs2OH4/jxTAy492ms+X0TpvzvHpzb8vSY0PH5fHjwiVfx0WffoHHDOnnCezwjCxdeNRxD+1+Fa7tdgkVLV+K2URMx/62nUKt6ZUyZ+Qne/XgRZkx8AOlpKRg0cgLqnVQdY+/tT+GNScsVr51QeKMnvFyHtyBbxvCG7m9qWTKrVyAnvrRmdd/MV3gEKLyFxz7SnqMuvFKBDZv/Qd/b/4tTTj4J23bswe69BzF1/L1o0rh+pPo59vvkN+fi0y+/R5dLz8O8r37IE14Z3R183wSsWDAZKSnJ2v4uu26EJr/XdrsU3W8ZjY7tWuGWa7tov81ftAx3PjwJaxZO02KPOcLrWBOxIAAUXgovR3j1+8CcKTnYss6LRs0TUK6y8cuF1RheNcKblAiUTDO+NnZWDnA808MRXuNNFFcpKbzubc6YCK8c/qat23HD8Mew78BhzHntMTSoUyNmVBYsXo6xE17Du5PH4OvvVuGdjxflCa/89/RZ8/DpG0/k1WfYA8+ibu3quGtgT7TqPBDjRtykSa9s6/7YjB63PoylH7+gxR5v32fu1WPMDpo7KpIE5r1+YlmypiaXJVvuX5as6wBnlyXLGDITCc1qI+3FPo7xfH9iNv7Z6EPjVgkoXcF4scvm+18rD5+Qfz5ApBK+/ywHkrdGAwufFt4AtO6YgHM6JUXaTb7fH3kzHTm5QJsm2Ug0uEqcpP9mTTJEeEf1MXddkZCGnxeeWKWhnvFJwBt/OfGltV6JON3kl9aOdzvxaeFeJj8tPHs1EhpWRdrrfU0xnTM5B5tFeM8yKbw/nJi0NjwZNUywkRHeGV+mokJpH5rWzzFcVy2Gd2simtTLRY82WYbzMWF8EBDhvfiCVqhYqRJu7H+r4YP6a+sWvPv2mzj3/DZ4f8583XzVK8Qm/NNwpYtYwqgIr4yCbv5rZwEUm/7ajo8XLEXXjuejTq1q2u839uxYYEKbkwx/+W0T+t/xBKZOGIEmp9bDO3MW5hNeCVn4bOGyfDG9Es9bqkQ6Rt91I864qB8mPX4H2p57plYtGa2+ou8D+GLW06hetSJ8xh/8nTwslhWnBN5+8RhW/5CN01sko2otg6YEYOXSbOzb7UXfu0qiURNzchYKZcayzdh2w3SktaqDGjP6OUZ88uNHsOn3XJx1fjLKVTJ+jF/NztTq8Nh0f/y80e2LDzMgeeuekoj6pxpns/G3HGz+PRcXd03FJVelGd2dlm7I80B2LtC5FUwJ72fLgZQk4PkhpnaHebMysGReJhqcloQ6DY1/IvjXn3Ow/a9cdOufjpYXGn+QyPnnALa2fwYJpdJQ5sazDVc2Z/dhHHnnZ6ScWg21PhpoOJ8kfG3CUfy+KgdNz05GpWrG+81PS7JwcJ8PAx4oZYrNms3Ac7OBymWBs081XtV/9gAr5EHpFODmTsbzMWV8EFizZg2aNm2CypUrY9CgwYYPavPmzXj99dfQtm1bLFy4SDdfEV7QyjCHaCaMivCOfOwVfLnkZ0P1/vLd8ShTqoShtFYSjZ3wOr77aS3andtMy77uzy1Y+/tm9OjSFoNu7Ip5C5dFHOF9dOTN6NC2pT9/0AgvQxqstArzhCLAkIbQfYPLkoVmw0lrodlYDWngp4V5nbZCgCENVqjFJk9UhDc2VTe2lyU/rMavf27JS7xq3QasXrcB13fvgOuuvhQ/rvxdi+Fd+fkUJMu7RAAde9+DG3p0yIvh7XRRa9zc53LtN8bwGuPOVNYIUHgpvIzh1e8DsY7hpfBau4YV91xKeJOSk1GtWnXDODIzMrB79y4tpOG92fohDTUqMqTBMFCdhHEvvMHHHBzScOx4Jlp1HoARQ3qjj84qDTLZ7b25i7VVGkqkp2LgiPFcpcFOj2PesARiLbzen/9C5tCZllvFI/G9k8zF977/fDa2SQxvS5MxvPzSWsh24ggvR3gtn8TM6CgBJbxWC6XwWiUXOV/UhTcjMwuLv1uJhUtXYtOW7QVq9Or4e2O2Dq/sPFh45W+yxq5MVFPbg7dfj95Xttf+KWsGS0zv19+v0v59xin1MPHR21ClUjnt3wxpiNzJmMI4AQpvaFYMaQjNhsJL4TV+lWHKaBJQwlumbFl07ORf3cnItnvXTixa+AVHeI3Aspgm6sI77e15+N9Ls3BWk0Y4qWYVJCflnzQyYmgfbX3bwt7kM8c7du9DlYrl8kIbAut08PBRZGfn5H1wQv1G4S3slouv/Rea8FYtg6TLzzAM07f9EHLnrQFHePWRjZ15YpWGM0yu0rDWv0oDPzxRkCtDGgyfnkxYiAQYw1uI8CPsOurCK/GwrZs3zvtQg3tRWKsZhdcaN+bSJ0DhDd0zitII77iZ6doqDWVL+ACjq4T5gIPHPEhOBB40uSzZtx/n4OeFXlSpBVQ0sYLBts1eHNwDXNI7SVsmzujGTwuHJsVPCxvtRfGZjsLr3naNuvD2HjwWZzdvjNtv6e5eCjZqRuG1AY9ZCxCg8MaH8KoRXitd3M4Ir5X9SZ721yTiNJPr8GZcfWId3mtMrsM7ZzU8sg7vaybX4Y3xhyc4ac1qbyre+Si87m3/qAvvzA+/xGvvfKZ9bCL1xJfM3IvDfM0ovOaZMUdoAhTe+BBeNcJ7Zv1cGF07U9b0XrUx0dYIb2o6kJJq/Aw7fgzIyeIIrx4xCq/xfsSU/xKg8Lq3N0RdeF98fTaen/ohmp7WAJUrFlww/r/334oS6eYWdXcTTgqvm1qj6NeFwhsfwssYXv129O05glyO8Bb9CxWPICQBCq97O0dMhHf1uo0hCTw9ehCF1739gzWLMQEKL4XXTkhD7UYeVK9rNGgY2LjmxKeFGdJQoONxhDfGF7842R2F170NGXXhde+hO1MzjvA6w5Gl+AlQeCm8FF79PsBVGniVLAoEKLzubSUKr822ofDaBMjs+QhQeCm8FF4KLy+LRZcAhde9bRd14c3Kysak12bju+VrcfjosQIkZr00GqVLlXAvoQg1o/AW2aZzZcUpvBReCi+F15UXJ1bKEAEKryFMhZIo6sKrJq1demFLfP71cvS84iKULJGGWbMXok6tqtone93w4Qmr9Cm8Vskxnx4BCi+Fl8JL4eXVsegSoPC6t+2iLrzXDBiDs89qjIE3dEWrzgMw780ncFLNqnh37iI8N+V9LHz/GSQlJrqXEEd4i2zbFMWKU3gpvBReCm9RvHaxzn4CFF739oSoC+/FPe7A4BuvRPcubXF6u754dfy9OOes07D1n53ofO0IvDd5DBo3rONeQhTeIts2RbHiFF4KL4WXwlsUr12sM4XX7X0g6sLb/ZbRuPiCszD4xq64+e6nUKdmVYy64wYtplf+/cGrY3FKg9pu5xSyfgxpKLJN58qKU3gpvBRedwjv+m2JmPFlCpISgZJpPsPXi6wc4HimB03q5qB7m2zD+ZgwPghwhNe97Rh14b137Ev4a/tuvDVpFD5esBQjH3sFDerUwIYt29Cofi18OHWce+kYqBmF1wAkJjFMgMJL4aXwukt4DZ+8QQkpvFbJFe18FF73tl/UhffI0ePIzMpGxfJlNArvf/I1Fi1dgcaN6uLqyy5E1crl3UvHQM0ovAYgMYlhAhReCi+F1x3CK6O0Ow8k6FZmy64EfLUyCXUqe3Fx8xzdNDIqXLms1/C5z4TxQYDC6952jLrwhjv0r775Gee0OB0l0k18/N1lLCm8LmuQIl4dCi+Fl8LrDuENdylZtzURsxanoHHtXPRql1XErzqsvpMEKLxO0nS2rEIT3unvfIanJr2NpR+/gLKlSzp7VDEsjcIbQ9jFYFcUXgovhZfCWwwudXF7iBRe9zZt1IR3154DGPfs61jxy59o1exUXH15W5zf6gzk5Obi8efexNuzv0LHdq3w5KiBXJbMvf2DNYsxAQovhZfCS+GN8WWHu3OQAIXXQZgOFxU14e09eCxWr9sA+eDE9p17seb3TdpHJl55Yw6W/PALBt5wBYb0vQoJCR6HDym2xXGEN7a8431vFF4KL4WXwhvv17l4Pj4Kr3tbNyrCu23HHlza626Mf3gwOrZrDZ/Ph/sen6yt0iDbEw8MQJdLz3UvFRM1o/CagMWkEQkUmvCmJMFTwfgnvn1ZucC+o/A0q420SX0iHldggvefz8a2jT40bpmA0hWMZ122wD8BaNj4FOOZAPzwWQ4kb436QK2T9Sch6RX493ovtm0EWndIwNmdkkztc+zMdOTkAm3OyEaiwV1K+m/WJoPCS+E11dmY2FUEKLyuao58lYmK8P7y2yb0GjgGiz94FpUqlNV2uPi7VRh83wTMmHg/zmrSyL1ETNaMwmsSGJOHJVBowmuxXSi8+uAovPpcfHuOIHfOangaVkXaa31N9bo5U3KwZZ0XjZonoFxl41nXLfPiyAGg+7BkVK/nzBtFTlozzr+4paTwurfFoyK8P//yJ64f9ih++ORFlCqZrh39ijV/4rqhj2LFgslISUl2LxGTNaPwmgTG5O4U3golkHh2feOts+8ocn/YxBHeEMQovBRe4ycTU8YTAQqve1szqsLbteP5SEn2y+3OPfvx9fer0O2yC5GY8O87vhFD+yA9zdwrSjfhpPC6qTWKfl0KbYS3ahkkXX6GYYC+7YeQO28NhZfCi8RrWhjvNxzhNcyKCYsmAQqve9stKsK79vfNuPPhFwwd9XuTx6B0KeOxg4YKjWEiCm8MYReDXVF4QzcyY3hDs/lmTi5WLMpF7UYeVK9r/LX9xjU+7NnmQ/trEnHa2YmGzzDf9oPIuPoleEqmUni5Dq/hflMcElJ43dvKURFe9x6u8zWj8DrPtDiXWJyEt1IND9JKGJczmUQmm9VJa7K/yjWN72/3P34Z5KS1gmckhZcfnijO1+lwx07hdW/PoPDabBsKr02AzJ6PQHESXqtNb1V4re6PwkvhDSbASWtWz6b4z0fhdW8bU3httg2F1yZAZi+2wlupBpCSZrwDyBJhVkZ4f/3Ri3U/5Oru6PB+Hw7vB0qXl//pj/7Kq/7GrQyuLXZiL5y0pt+uXKXBeH9nyqJJgMLr3naj8NpsGwqvTYDM7g7hjeN1eMN1MbVGr5VR3HDlUngpvLy0FU8CFF73tjuF12bbUHhtAmR2dwivxXYoCuvwUnhDE+CkNWsdnyEN1rgVh1wUXve2MoXXZttQeG0CZPZCFV4czoT3z126reD7cyeynv0SnpMrI+X2S3XTeEqnwtOwiqlWjPWX1oqD8H77cQ5+XuhFajqQkmq8OY4fA3KygEt6J5kK2yiuk9a27UtAVrYHW3Yl4KuVSahT2YuLm+dowGtWykWy8YUujDcSUxYpAhRe9zYXhddm21B4bQJk9sIV3jD8vT//hcyhMy2ttRuuWSm8+nTsfFpYCa/V08m08O48hIyrXgTSkpF40SnGd3soA7nfrkdCo6pInV70vrT28iepEOnV24ZekYnKZf0riXArvgQovO5tewqvzbah8NoEyOwUXoN9wOo6vMVhhPfQXv/kO71t5de52LjGizPbJKJBE31ZK1/VgxKlDTYEAJ8SXuNZ8qUsqsI75/tk7Dmoz7Db+VkoV8pnkQizxQsBCq97W5LCa7NtKLw2ATI7hddgH6DwGgQVlGzR+zn45Vsv2nZLQtMLzK02EWqPvv3HkPnAR/o/Z2bD9+sOIDUZnsbVdNMknFQeKSM7mzqgOVNysGWdF42aJ6BcZeNZ1y3z4sgBoPuwZFSvZ3wdZuN7YEoS+JcAhde9vYHCa7NtKLw2ATI7hddgH6DwGgQVA+ENVxPf5j3I6PMqPHUqIu2tm61VWicXhdcxlCwoigQovFGEa7NoCq9NgBRemwBdnv2DF7LhgbVRoYo1gQuvTDJ1hLH+8ES4yjGG11TT5Usc62XJwtU0GiO8FF7rfYM545sAhde97Uvhtdk2FF6bAF2efeKdWZZrWLOBB92GJJvKT+ENjYsjvKa6Ul5iCi9DGqz1HOayQoDCa4VabPJQeG1ypvDaBOjy7Ep4T21pPPbx6GEf/vrdBwqvfuNylQZ9LnZWaeAIb2gCjOF1+UU2zqpH4XVvg1J4bbYNhdcmQJdnV8LbuqPxBTZlxvxvy70U3hBtS+Gl8Fo57RnDa4Ua88SagBJeq/s99/w2eG/2fN3sNSqmWy2W+QBQeG12AwqvTYAuz07h5Tq8VrrouJnpyM4FypbwwXAIuA84eMyjfbzgwT7HrexWNw9DGhjS4FhnYkERCVB4IyIqtAQUXpvoKbw2Abo8O4WXwmuliyrhtZKXwqtPjSO8VnoT87iJwIqfl6NLhwvRrHkLfPL5EtNV4wivaWT5MlB47fEDhdcmQJdnL47C65NPDR/J0D45nPWMfFq4ClLvaK+1lOfkqkBpE9+u1Wnf4hDSIJ+e9fn0V/eYtiBFo9Kvg/6ESI/HhzpVnPtiF0d4OcLr8stssakehbdwm5rCa5M/hdcmQJdnV8JbprzxpclycoBjh4vupLWMwTPhW/mXbsukPt8HCWfVttVqxUF4wwEaPcMfhzfmeufCFvT29896/1e/gr+0lpgEVKtrvD+bbWyuw2uWGNMXFwIU3sJtaQqvTf4UXpsAXZ69OC5LljXhC210V29LveMSeBpWsdVqFN7oC2/mceCVB/RHkEuUAW562D/KHI2NwhsNqiwzHghQeAu3FSm8NvlTeG0CdHn24rwsWbSahsIbfeHNzgTmTM7WbcL0Uh5c1tfcB1HM9AUKrxlaTFucCFB4C7e1Kbw2+VN4bQJ0efZYx/DOn5GDP1Z4Ub4KkF7KOJy92wEZ1es6IBknnRK919XGaxQ6pRLeSjU8SCthvK5/r/fHtQ4bb390ctsG/+v+dcty8euPXjRulYDTWvuXnqvRwHidrPCIVUiDlbo5kYfC6wRFlhGPBCi8hduqFF6b/Cm8NgG6PHushVd9ac0qlituTUKdU41/JMPqfuzkU8JrtQwnhDdcqIoT5Yc7NgqvtZbnKg3WuDGXewhQeAu3LSi8NvlTeG0CdHn2WAtvcRjhlRHVQ3v1VyGQ3w7vB05t5UGoiYJnd7L/Ol6kO9R29VBzn4M224UpvGaJ+dNTeK1xYy73EKDwFm5bUHht8qfw2gTo8uyxFl41wtugiQcVqxt/tf77Tz4c3OtDURjhDdfkavS32+Bk1DzZ+PG7vBvlqx6F11prUXitcWMu9xCg8BZuW1B4bfKn8NoE6PLsxXGVhsJsEgpvYdJ3Zt+M4XWGI0uJPwIU3sJtUwqvTf4UXpsAXZ6dwhvbBqLwxpZ3NPZG4Y0GVZYZDwQovIXbihRem/wpvDYB2syeM/XbkCUk9T/fZumxz86Qhmxs2+gDQxpi3/ec2iOF1ymSLCfeCFB4C7dFKbw2+VN4bQK0mf34eU+ELCF96Qibpcc+O4WXwhv7XufsHim8zvJkafFDgMJbuG1ZbIT3eEYW9h84hGpVKiIhoeBkGK/Xh11796NShbJISvSvxxm4HT5yDDm5uShftnS+v1N4C7cDZ09ZolUg9+e/tM/heprVRuKJT98m39ymcCtnYe8UXgqvhW7jqiwUXlc1ByvjIgIU3sJtjGIhvMMeeBZffbtCI12hXGlc2akN7hrYM4/84u9W4e5HXsSx4xna30bf1Rc9/9NO+2/524hxL+flb3paA0wcN1wTY9kovIXbgdXeRXxzpi5FUv/zUBRFVx0HhZfC644zynotKLzW2TFnfBOg8BZu+xYL4X1+6ofo0K4VTqpZBd//tA5D7n8Gb7/4EJo0rg8Z+b3wquEY2v8qXNvtEixauhK3jZqI+W89hVrVK2PKzE/w7seLMGPiA0hPS8GgkRNQ76TqGHtvfwpv4fbdfHun8HJZMhd1x7BV4bJk1lqKy5JZ48Zc7iFA4S3ctigWwhuM+OIed6BX14tx63X/gYzuDr5vAlYsmIyUFP+C85ddN0KT32u7XYrut4xGx3atcMu1XbTf5i9ahjsfnoQ1C6fB4/FwhLdw+2/e3im8RVd4/1nvwweT9D8EUaO+B9H+EESsuzCF1xpxCq81bszlHgIU3sJti2InvFv+3qkJ7aTH70Dbc8/EOx8vwvRZ8/DpG/9OfpIQiLq1q2thD606D8S4ETdp0ivbuj82o8etD2Ppxy+gbOmSFN7C7b8U3hMEivKHJyi8LjmJHKoGQxocAsli4o4Ahbdwm7RYCe/RYxm4bug4lCpZAtOfGYnExAQtZOGzhcvw3uQxeS0h8bylSqRj9F034oyL+uXJsSTYsPkfXNH3AXwx62lUr1oRR46H/kRp4TZt8dr7kRcX4+jL36DkgAtQalDbInvwH07JxLrluTi1eSIq1zD+pbE1P+Ri/x4feg1LRYPTC0669AMxXl6RBVgEKn7Hy/5PI08YkFMEamu+irkbd2NPt5eRWK8SKn040HwBIXLMeiED63/Jxektk1ChqvG+vGppDg7t9+GGe9JRu0GCY/UpHgX5isdhxugoly//ERddeD5atGiJRUuWmt5rqfTofvbcdIWKWIZiI7wSq3vbqOewY9c+vP7c/ShXtpTWVEZGeB8deTM6tG2ppQ8e4T141N3C6zuUgYy5q+E77J+Ql9alKRJqliti3TRydY++tBjHX/kG6bdegJIDi67wzn41E7/+lItGzcwJ79pluTiwx4eeQ1NR/7RQwsubV+SeFP0Ud09O0Xbyv1uyor+zQthD7sY92N/9FSTWq4jy7w9wrAbvTsrEhjVeNG6ZiApVjAvv6u9ycXi/D9fdlYpaFF6T7WGcs8lL3kwuAAAgAElEQVSCi2Xyn5b/iPbtzsdZLVriq8XmhbdsSQqvnY5TLIT30JFjGP7gczh+PBMvP3lXnuwKOBXDu/LzKUhO9o+8dOx9D27o0SEvhrfTRa1xc5/Ltd+KWgxvxo3T4PtzV14f8ZRKQ+r0vvDU8K8yES8bY3iLbgxvvPRBo8fBGF6jpPKnmzM5G1t+9aH2yQkoZeKZfdNvXmQcAXoMT0a1uhQ4a/SZywkCDGlwgqL1MuJeeI8dz0SvgWO0NXQnjBmKUiXTNVoJCQmoXqUC5PdWnQdgxJDe6KOzSsPkN+fivbmLtVUaSqSnYuCI8UVmlYbcn7cia+hbBXpH0k3nI/mmC6z3GhfmpPBSeF3YLXWrROG11lJKeK3lpvBa5cZ8zhGg8DrH0kpJcS+8O3fvh6zKELzJerxLPpqo/VnW6JWJamp78Pbr0fvK9to/Je5XYnq//n6V9u8zTqmHiY/ehiqV/EMMbl6Hl8Jr5ZQo3DzFfR3ewqUfm71TeK1x/nZuDnZs1g/L2bPdh6zjQMXqQGq6/ijuRd2TUaGatX0zFwk4QYDC6wRF62XEvfAaRZOb68WO3ftQpWK5vNCGwLwHDx9FdnZO3gcn1G9uFl7fHzuR0Xd6AQTJw9sjqZc/JjleNo7wcoS3qPRlCq/zLfXhpBz8vd6LKwcloXZDTkxznjBLdIIAhdcJitbLoPBaZ+f6EV6pYNaI95G7ZH3eUXqqlUHqa/3gKZ1m88jdlZ3CS+F1V48MXRsKr/MtReF1nilLdJ4Ahdd5pmZKpPCaoaWT1s0jvKq6MtLr3XEIKJWKxLNOsnnE7sxO4aXwurNnFqwVhdf5lqLwOs+UJTpPgMLrPFMzJVJ4zdAqosJr8xCLRPZ4Ed75M7LxxwofatQHylYw/mp26x9eHD0EdB2QjJNO4Ux0N3daCq/zrUPhdZ4pS3SeAIXXeaZmSqTwmqFF4bVJK3rZ4014rZKi8FolF7t8FF7nWVN4nWfKEp0nQOF1nqmZEim8ZmhReG3Sil72eBHeHz/3Yuvvubqg9u3wIeMYUL4akF5CfxT3gq5JqFqbI7zR62n2S6bw2mcYXAKF13mmLNF5AhRe55maKZHCa4YWhdcmrehljxfhDUfok6k52LjGi8v6JaFBE+PhDtGjzpKtEKDwWqEWPg+F13mmLNF5AhRe55maKZHCa4YWhdcmrehlp/BGjy1LdpYAhddZnlIahdd5pizReQIUXueZmimRwmuGFoXXJq3oZafwRo8tS3aWAIXXWZ4UXud5ssToEKDwRoer0VIpvEZJhUhXFJYls3mIRSI7hbdINBMrCYDC63w34Aiv80xZovMEKLzOMzVTIoXXDC2O8NqkFb3sFN7osWXJzhKg8DrLkyO8zvNkidEhQOGNDlejpVJ4jZLiCK9NUtHNTuGNLl+W7hwBCq9zLFVJHOF1nilLdJ4Ahdd5pmZKpPCaocURXkO0cr/+E94VW+E7nInEs2oj8bImhvLZSUThtUOPeWNJgMLrPG0Kr/NMWaLzBCi8zjM1UyKF1wwtCm9EWtmvfoOcV7/Nly7ppvORfNMFEfNGSuD9+S94V27VTZb701ZNshOan4TEFvqfT05odhISzqodaTeu/Z3Lkrm2aUxVjMJrCpehxBReQ5iYqJAJUHgLtwEovDb5c9JafoAZN06D789d+f7oKZWGtAW32SQNqFFcqwUl9T8PyTe3sZq90PNReAu9CRypAIXXEYz5CqHwOs+UJTpPgMLrPFMzJVJ4zdDSSUvhzQ/l+HlP6BJNXzrCJukA4a1aBp7qZQyX59t+CNh5CBRew8iYMIoEKLzOw6XwOs+UJTpPgMLrPFMzJVJ4zdCi8EaklTlkJrwr/so/wlutDNI+GBQxb6QEaoTX06wWEs/SD1vQKyP3563wrfzbUeHNOO7D3n/8e6t5cvQ+5Xtwnw9fzMzR9hP8aeHyVTy4uGdSJGz83WUEKLzONwiF13mmLNF5AhRe55maKZHCa4YWhTciLZHL7BEfwHc0U0vrKZmK5FGXI/HChhHzRkrgFuHd8IsXX76di8zjPq3KZSp4cFnfRFSu5fznfvdtB958KksXTZVaHlxzZ3IkbPzdZQQovM43CIXXeaYs0XkCFF7nmZopkcJrhhaF1xAt3+EMeE/E8SZUKwtPjbKG8kVK5Bbhffn+LGRl5K9tvdM96HKT8/KZnQXs2uoX6+AtOQ0Q6eVWtAhQeJ1vLwqv80xZovMEKLzOMzVTIoXXDC0Kr01a9rK7RXgn3llwxLVmAw+6DXFeeO0RY243EqDwOt8qFF7nmbJE5wlQeJ1naqZECq8ZWhRem7TsZafw2uPH3O4gQOF1vh0ovM4zZYnOE6DwOs/UTIkUXjO0KLw2adnL7hbh/fytHPz2ozffwVzQNfH/7F11nJTV9z5LIx1SIkgpSreEdHc3LLF0L7GwdOzS3d3d3SUIogJ+BREFBQVJRbpk2d/nOfzuODPMsDszd96Z2T33n+9Xdt4bz73vfZ977jnPoXylYro2QHk6WiAghFf/NAvh1Y+p1KgfASG8+jF1pEYhvI6g5QLhDb/xgMJ2n7PZml+aJBSzmvuzkbk4VI8/7i2EF0CcPRpGf15+TXHf86PMOWNQllz6A9Y8Drh0wC0ICOHVD6sQXv2YSo36ERDCqx9TR2oUwusIWi4QXqgXvOy62mZrMfJ9SHFnNnWxJ1H/cW8ivFEfbRmhuxAQwqsfWSG8+jGVGvUjIIRXP6aO1CiE1xG0XCC8sPC++n8Lb9jOcxR+6yHFrJKTFQygZCAW3ognQghvxBjJL7wfASG8+udICK9+TKVG/QgI4dWPqSM1CuF1BC0XCK/5oyo5Q5wZTRxKoOBiV33+cSG8Pj+FMgAiEsKrfxkI4dWPqdSoHwEhvPoxdaRGIbyOoCWE10W0XHtcCK9r+MnT3oGAEF798yCEVz+mUqN+BITw6sfUkRqF8DqClhBeF9Fy7XEhvK7h58jT4b/cpn8XfUVhX14iv7RJKFbVnBSrbQlHqpDf2kFACK/+pSGEVz+mUqN+BITw6sfUkRqF8DqClhBeF9Fy7XEhvK7h58jTzytMMaWHVs/FGVhVfM0dAVEIL8VbHaABsYirEMIbMUbyC88jIITXs3MghNdF/G/8/czhGozy4VXt2Opg/BNBDvfb0w8I4TVmBuwpisT8IivFGVvPmE5E4VbEwqt/coXw6sdUatSPgBBe/Zg6UqMQXkfQ8jELrxDeNxMGAhf+/XWK1aYYxQ74wsUZf/P49cuv6cav4fz/sxeKQYmT+2mp1xsqEcLr3lkQwqsfXyG8+jGVGvUjIIRXP6aO1CiE1xG0fIzwqu4qAuPrer/KwksJ45JfwriRnrnwxy+IHr/QRnhP7Q2jb/aGWbRftXWsKJV8QlwaIr28HP6hEF6HIYvwASG8EUIkP/ACBITwenYShPC6iL83uzQYTXihLxy267xNRGNWzemy/6eJ8Do5Z7osvNMDX77Vgw+y+FHdLrGd7Jn3PYagtRchuyj80h3ySxCXYlbLSbF7lve+jvpgj4Tw6p80Ibz6MZUa9SMghFc/po7UKITXEbTEwmuBACzH5hf5r3adp7BdttMnx6yaiyP9zUuM/BkcQt/kw5vlfYrxcepIP/v6l9sU/utdbRbe6EB4Iw2u/NBhBITwOgxZhA8I4Y0QIvmBFyAghNezkyCE10X8o7OF91mxsS6h52jgnLcErc0Nfkkvn1sOPapZeF2aWHn4nQgI4dW/QITw6sdUatSPgBBe/Zg6UqMQXkfQEguvBQKK8PqlSewQikirjOKrhPfs0TA6vvU/H9448YiqtYlF6bPGcAgH+XH0REAIr/55F8KrH1OpUT8CQnj1Y+pIjUJ4HUHLAcL7LoWEyDSpM+2wu4LWFOF1NCHBq4XHfZrwovN3r7+m67+GU7z4RB9kjVoqDZFZn/Ib5xEQwus8dvaeFMKrH1OpUT8CQnj1Y+pIjUJ4HUHLiwlv+I0HFLbbtv/s65sP2bdWZcyyNWS/fBkopoM+tdGZ8Lq4bOTxaIyAEF79ky+EVz+mUqN+BITw6sfUkRqF8DqClhOEN2aVXOSXLkmkWwnb+QPhyt9RC6897dTINhyrbXGK7WDqWCG8kUVXficI/IeAEF79q0EIr35MpUb9CAjh1Y+pIzUK4XUELR8gvNCn9cuWKtKjCr/5gAm2EN5IQyY/FARcQkAIr0vw2XxYCK9+TKVG/QgI4dWPqSM1CuF1BC1fILxpElPMarkjParXZ36n12evuUR4I92Y1Q99NWjN2fHKc4IAEBDCq38dCOHVj6nUqB8BIbz6MXWkRiG8jqAlhNcCgegqS+bikpHHozkCQnj1LwAhvPoxlRr1IyCEVz+mjtQohNcRtITw2iS80VGlwcVlI49HYwSE8OqffCG8+jGVGvUjIIRXP6aO1CiE1xG0hPAK4XVxvcjjgoAQXv1rQAivfkylRv0ICOHVj6kjNQrhdQQtIbxCeF1cL/K4ICCEV/8aEMKrH1OpUT8CQnj1Y+pIjUJ4HUFLCK9NwuuXJvKya6gg/NYDrkeC1lxcfPK4zyDww5VY9N0vMbm/v995k5EvY6rX/L8FPw6j3Jle+cxYIupo+NW/6HnTheSXMQXFWx0Q0c+1/F0IrxYYpRI3IyCE180AR1C9EF4X8b/x9zObNahMa4br8CZPQDE/zxTpUb3+5Q6FX77jWyoNWd+nmB9HXnotjMd4l2K1KUaxA76INDbyQ0FAFwLHzsemA2dj2ayufL5X9EXOf3U15fF6hPB6fAqkA16KgBBez06MEF4X8fc6wuvkeJzR4UWyC3vlZdfV/Cck0LBXHM3s9u+CY/Rq0QknR0hCeJ1GTh50FYEHT/zon8dvLLvWJVnC15QkQbirTXjN80J4vWYqpCNehoAQXs9OiBBeF/H3NsLrFzsmUYoEkR/V4xcU/viFUxbedzWiJMscdVt4V51hu87Tvzt+sP2TW28SaPilSUxkx8UidvXcFLNqzshjI78UBAQBhxEQwuswZPJANEFACK9nJ1oIr4v4ex3hNTDxhNGE913tKeuvuC24uKDlcUHARQSE8LoIoDweZREQwuvZqRXC6yL+ERFeZ6uHK4AjV/5wL4AbASycRmVaE8Lr7OzKc4JA1EVACG/UnVsZmWsICOF1DT9XnxbC6yKCQnhtA+gOlwax8Lq4WOVxQcAABIwivI/vE/349Rt1i4vfhdPDe+H0SUE/SpLcj5KkiEnZC/kZMFppQhCIPAJCeCOPlTt+KYTXRVQjIrwximQiPwd8asO+vkJ07wkHe4mFN+LJedHlTXAcpM7Cbz4gv7RJSMmkxZ1pP2Au4prlF4KAIOAMAkYR3ltXw2n9NNvqFumz+VGdTrGd6b48Iwi4DQEhvG6DNlIVC+GNFExEjx4/pVdhYZQsSSKLJyIivJGs/q2fOUt4KWE8iuGAZFf4DQR7PfCJoDVbWCpLsq2/6QyYc3Ye5TlBILohYBThNbfwWmMsFt7otuq8e7xbN62ny5d/oVs3b9Cq5YspTZq01LRlG+50/YZNKeNHkZMSTZcivncP1Mt7J4Q3ggl6+uw5BY2aS4e+Osu/zP1ZFpo+qjulTP4m2YI9wvvvlAP0+tIdm7WHQxf2yQvyy5aK/BLGtfmbOD3Kkd/HqSO9fJQPb6QfsPqhM7Jk72rLKJeG12eu2e1GjPwfOguHPCcICAJOImAU4XWye/KYIGA4Am1aNKS9u3fYbHfNxh30RamykeqTEN5IwWT3R0J4I8BvwaqdtH77EVo+fSDFjxeHOvWfTJkypKWR/d6czuwR3ndVq5JSOGrFfVedsNS+2n3O4idhO8+xVJetAoJrXmLky+CQC0VEy84owhtRP+TvgoAgYCwCQniNxVta834ElIXXVk/Fwmvc/AnhjQDr+u2GUqXShahds+r8y71HvqHAYbPo/OHF5Ofn5zWE19YwFLG29Td3X/cL4TXuJZaWBAFvQOD1kV8o7PJtogfP6NXGs0RJ4lOsevm4a7Eq5CC/jMm9oZvSB0HAZxEQC69rUyeENwL8ClXpSKOC2jLpRbnwy1Vq0H4Yndg+k5IkSkCPnkYuJWjYn/fp+f8nTXi+7RyF3bhP8WrkppgfJKGYaZNSvJq5XZtJG08/3/YDt2OrJOhY0i3tPd/+JjHEy+9+5/+NUzAj/y/G6o4xah+EVCgICAJOIfAgeAu92P2jzWeTTGpAcct87FS98pAgIAi8QSDRexKI6cpaEML7DvTCw8MpZ5nWNGt0LypVNA//8terf1LNVgPpwNqJlDZ1ikhj/+zUVbrRconN38crlJE+WNE60nV56w/vTT9M/8w4arN7ybqWouTdynhr16VfgoAg4CICT/b9RC9+vmWzlkTVclHszCldbEEeFwQEAUHAeQSE8EaAHSy8If0DqGKpgvxLlyy8/2/9tG4yZjr3WHidXxbOPQkrdtiNBzYfjpkuCcX8IKlzFctTgoAgIAgIAoJANEdALLyuLQAhvBHgBx/eymUKU0DTavxLHT68rk2ZPC0ICAKCgCAgCAgC0Q0B8eF1bcaF8EaA3/yVO2jDjqOs0vBe/LjUMWiSyyoNrk2ZPC0ICAKCgCAgCAgC0Q0BIbyuzbgQ3gjwe/L0OfUZMZu+/Pp//Mucn2Si6SE9KFXKN9fzzsiSuTZl8rQgIAgIAoKAICAIRDcEhPC6NuNCeCOJ34NHT+jff1+ZEk6ox4TwRhJA+ZkgIAgIAoKAICAIOI2AEF6noeMHhfC6hp9YeF3ETx4XBAQBQUAQEAQEgYgREMIbMUbv+oUQXtfwE8LrIn7yuCAgCAgCgoAgIAhEjIAQ3ogxEsLrGkbvfFpcGtwIrlQtCAgCgoAgIAgIAoyAEF7XFoJYeF3DTyy8LuInjwsCgoAgIAgIAoJAxAgI4Y0YI7HwuoaRWHjdiJ9ULQgIAoKAICAICAIRIyCEN2KMhPC6hpEQXjfiJ1ULAoKAICAICAKCQMQICOGNGCMhvK5hJITXjfhJ1YKAICAICAKCgCAQMQJCeCPGSAivaxjJ04KAICAICAKCgCAgCAgCPoyABK358ORJ1wUBQUAQEAQEAUFAEBAEIkZACG/EGMkvBAFBQBAQBAQBQUAQEAR8GAEhvD48edJ1QUAQEAQEAUFAEBAEBIGIERDCGzFG8gtBQBAQBAQBQUAQEAQEAR9GQAivhyfvVVgY3bj1F2X4ILWHe+K+5v/+5yHFihWTkiRK4L5GPFyz0WP0xLr5/fpt+jBdKooRw8/DaLuv+d/+uEmZM6R1XwNSc5REwOh3w+j9xhOTFh3G6Alco3ObQng9OPsgLcGh8+nJs+c0M7SnB3vivqb/uveA2vQaS/WqlyL/BpXc19D/1xwW9po27vqS4seNQzUqFnN7e2jA6DF6Yt3878KvFNB7PC2c2Jdyf5bFEFyNbmT1loM0a8kW2rNqPCV4L57Rzbu9PU+8G24flBc0YPS7YfR+44l1Y/QYvWAZSRcMQEAIrwEg22pCkZYbt/+mOWMDKWGC+B7qifuaVZtWsUI5KahLE/Lzc69l8Lv//UwhU5fT9Zt/0apZgyhbpvTuG9z/12z0GD2xbtQHfVRQG6pUurDbMfVEA4rsLpnSn7J89IHbu3D37/t07cYdyp/rY7e3hQY88W5g3aR+PxmleT+5IWP891UYHT35PZX/ooAh7aERo98No/cbT6wbo8do2GIxa8jod8MTY/TGNoXwemBWbJGWr89coD2HvqGhvf3dQgwPnzhLa7ceYteJVg0rU7o0Kd06clublrvHuG7bYRo+aSkVLZiDZoX2pDhxYhs+xrnLt1OqlEmpTpUvtLdta93c+es+DZ2wmMYMbO8WlxGjP+g//3qN1m47TH/du09liuWj2pVLuOV9MJ8cT5Bd/x6jqUj+z2hooL/2dWKrQqPfjbPnL1HzriE0Jri9ITctILtBo+bS5SvXacP84W5/972F7Mqe6trr8/Llv7Rm6yE68d15ypMjK/k3qEzvxY/rWqURPG30u+HWwfhY5UJ4DZ4wW6Tl9t1/2Mf1xLfntX8c/v33FXUbNJV++e06dWtTl/CCz12xneaP7+M2S5YtsuvOMWIK120/QuNnraGVMwfRnsOn6PLVP2nayO507/4j+vb7i1SpdCGtM21vjLfu3uN28mi+9re1bv558IjixolDW/cepwY1SlOsmDG1jtFosnv05P+o84DJ/A6A7IKIfpQ+DQ3r00rruLyB7GbPmpGePntGeC+G9Wmtfb2Yj9HodwMf9PZ9J1LtysXp7PnL9H6KpDS8T2s+CLqjKLJ7887flOnDNAQSiL3OHYdO1X+j3w1v2lOxF23d8xUfRmPGjKFtSo3eU6/fvEttA8dR8mSJqX3z6nT23CU6duoHWjVrCMWPF0fbuMwrMvrdcMsgfLhSIbwGTp4t0qI2zjWzB7uFgM5cvJl2HvyaNi4YaXqJ9x39jpZv2EfLpwdrH72tTcvdY9y8+xiFTltp4cZw5vwl2n3wazp15icqkv9TGtijhbax2hojyNn8lTtoz8px2q1LttaN6oN/w8pUr1pJbWOz90FHYOX+Y6fpddhrPjzoviHAwaRSk740uFcLqlmxOHcDRKZh+6E0oFtzKpwvu/YxWlt23T1GuDHAslu6aF7q27kxW64PHDtN2/Z9xYczdxSj3w31QQ8dEEAVShYk+H9Onr+e0qZKTs3qVtA+REV2ge3ccYH0Xvx4dOWPm9R35BxaOnWAW3yxrcmuu9eNt+ypMJps3XOcbt65RzhcLJjQVxu+Ru+pWIi4gciUIS2N6NvadIsUOm0FJU2SiDr719K+Vo1+N7QPIApUKITXoEl8F9l1p29k1eZB1KdjIypbIr9ppPhITF+4kQI7NNQ6+ndtzO4aIyyq5RoE8jXmp9kymsajCFS8uLFp/9qJFC+unhO7vY0ZwU7u8P98F9l1l2+09Qf9yInvmUBUr1CUgwG37z9Bc8f1ps8+/kjb+tl75Fs+MKybO8xCBQKELVf2zJQ1k16/Wmuy6+4x2iK7CjyQQty6xIoZgwKaVtemgmH0u2H9QTcf3+vwcAoaNYcPM6WL5dWybmyRXfM2T3z3I+04cIIPu4kTvqelTaPfDW/aU7EXte8zgU6d/Yk2LxpFH2fWEyNh9J6KhYA2S9XtQYc3TLG4ebjwy1W6eu02VS1XRMt6UZUY/W5o7XwUqkwIr0GTCdeCOcu3UetGVThAzdaV2KrNBynrRx9otWbhFNuwZmmT1cx8uJBgev78BX2c5UMt1+G4nsX1ertm1fnEbMQYYW2AFfDQ+skUO3YsHh7Ibiv2kfyUEiV8jy79dp0mDu2sxfJqPUZr4oSP8KS563iedVzhWq8bWx8HbKY//PSbNhWMb85epH8ePOQANayRGi0H0KzRvahU0TyM7/Z9J9jPdsWMgdreHlxDh05dQVuXhLzls/vk6XP65bdrLImWMnkSLW2u3HSAPs//Kd+qGDFGkM8d+09S2yZVbfok4+8jJy/jvWH0gPZaSK/R7wbWzcPHT+wGjZ376TcKCplLrRpVoYY1Srs8j3g34DPfpkkVtuxal6fPXtCCVTvowJenafmMgVp83I1+N7xlTwXZHTR2IUF+rXm9CoSbw0WTg7QEJBq9p2KdPHv+kgpWbk+7V46jDB+kslg6GOvFy39QogTvUcb0euRCjX43XH65omgFQng9MLG2iODKTfv5Wh5+US0bVKJPsnyopWdffXuelQvmjO1terHhuwSL3eUrfxIsoOlSp6SZo3symZi3Yju/5K5G4xs5xglz1vI15tSR3ejx42fUsnsok93g7s2ZXGzYcZRP7LY+iq6AbIvsInBm75FvqFf7BlSrUnH2X9RV7JFdHGogFda1dR0qXiinrua4HpB3KIlMGNLJVO+ft/6i2q0H0be752hrCx+Z1j3HUpnieXn9wx85PDycVm85xOs3S8Z0fJXat1MjalizDN28/TeNn72GQvq3c9nfzqgxWoMF33JYdqH72755DUqWJBF1HzyNypXIT3Wr6nFT8dS7ocaKYLldh05Ryc9zs0vDs2cvqG7AYJo/oS/Pqe4C5YvJ8zZwte2aVeNbn8VrdtPPv13jADqdxeh146k9NYZfDAoeM5/J7rxxvdmIcOzUOUqfNiW7BOgsRu6p0xZupKvXbrF/OcaEAut1n+Gz2HiCA1XJz/PQiL5tCPsTgoM7NK+hbcxGvxs658lX6xLC64GZ6x86j8oUy2silSC7c5ZtoxmhPTmIZeKctUxedOnIwmd35OSl1K1tPapYsiB/cEoVzUs92tajBAni09J1e+jCL78zyV677RAtmxZM6dO+7xIyRo4RxAgbFzbfLsFTKHnSxBZ+WWogr1+Ha7GcoT5Yj9r3nUDD+7RiK6H59eqw3v6E61QcHhZP7q/tOn7jzi/p0pXrJok3dU2mAoJmLN7MhxX8t66CTT7HJ5ksLHL40EP6bdKwzrqa4XoePHzCKhuItIdFbsue47Rg5Q4KHdCeviiSi5RbQL/OTWjE5KVUv1op6tyqtst9MHKMqrOwWpeu15N9eeHKAEvl8L6t6Y8/79CZc79oI2eReTfwG3dIBmIcPQZP5/WI/eXg8dOsNz5p3noqVjCHNlJvvgCg+Z3lo3RUON+njGn18kX5ZqJhh+FaD2ho0+h146k9den6vbRl9zFaOi34LdcQX95TQWLnrdjBB6KlU/vzHt6080ga1LMF1a9emsJfv6b+ofMpb44sdPL0BQoLC6Npo7prcY/zxLvh8kYZBSoQwuvhSVRkFyRTnZZPfvcjjZyyjHatGKutdzitxowZk6bMX8+R0wjoMM+YhYChf1+90kJ2rTtt1Bix+Rap1ok2LRzB19+qwA8U/qF3/35AXxTJTQN7NKcUyRLrw/b/JZHMA2dQ+YxFm+nBo8daA+ZUp235hD199pwKVen4ll+aKwOFq8GISUtp+qjulMDYd78AACAASURBVCRxQh4TgiC3LQ3lQCRYe2/fvUfZs2bQZkF/8fJfev78JRWr2YUDYyAzp8qug6eo78jZ1KVVbS1kF/W+a4ypUiRlxQ+8GxijLiWMcxevUI/B0+jA2kn8HsKloVPQJD5IwJqu3EdcmTvzZ229G8AZV9N4P1BgOe/YoqbJNcjVtpes28PuRCH9A7gqaLoOHLOAXY62LwvVch1u3kfscXkrBNC+NRPogzQpCeMbPHYhnTz9I9Wu/AX17qg3ZsET74Yar1F7KtoLHDaTyhbPzz78UXFPxTqJGyc21W83lANKu7apYxonbpXKNwzkmzNdZBeVG/1uuPouR5XnhfB6cCbxoYG1zJzsojtjZ67ma/imdcpRhVIFKecnmbT1UmU9q1buc1OdsITosuxad9ToMYLYnrv4G43s15Z99mA5n75oE5/aIVO0adcx2rTrS1o9a7C2D3vw6Pl07cZdU5Q4MMAm2rJbKD168pTbRbAORPh1FGjVwo1BRcKrOg8dP0PdBk2jxrXKUvHCufgWQYflTkX6g1AXyfcpWyJxYAiZuoKtsLiahkQaPgj5cmbTMUQmR536T6avd8wySR/BjaFZ11HaLLvmHbU1xvBwor4jZrOPb6KE8en95ElNrj86BokPbInCuZi8w22keddR7P8Olw4U3T795u9GwvfiU4egiYTD9dq5Q9mtCXsR3H6CuzfTMTwODKrSLMi0TrE+g0Lm8XuChBu6/d3RaYzh0pU/mWQjUBUyd8mTJqKxgzpS7FgxSbe/uyfeDaP31DPnLtGgsQv4BhLuN1FxT4W1N0+5thbBeNjDew6ZodWyq14sT7wbWl5qH69ECK8HJxBWHfi0mftBLVqzi69Y5o3vw9YzaMsGdmjgsk+tGiYkkNZtO0Kzx/RivyVbZBfWIFzfqCAwVyAyeozoOwLnIJ2llBpgJRw3azWFDmjHPn0gi8BUV5arHy78ym4LykcYlqbeI2axPzE0ZOHvNmfZVtYIRuIPVwu0lGEhLJD7vyxd8AftPGAKX4UnS5qIZizaxH2CH7OOAlyfv3jBY8QVeO/hs9hiPiqoLbtRIChj8LiFbPmFtcTVAveG8o16M344nNkju8o642p7eN58jA8ePaGG7YcxIe0eUI/ll1Zs3E/nL16hcYM6anGNwRgXrt5JUIiAJalbmzomsqt8+nFYQqIYHSoV5u/GoeNnuW24OYEIzxkTSORHVKxGFzq7b76WAE9gijiBxWt3M9HEejEnu8rfHSoycN/SEZAI4rJ262HaceAkXb9xhwrlzW5BdpW/O9y5Pi/wmY5lY7FujHg3jN5TAZLy2cU3AbeBUW1PxRhb9RzDh3fsmVhHtsiuzv3G6HdDy2L38UqE8HrRBCqya06MEHQG30xYJHUUWFXmr9hOew5/wx+Yq9dvWbgx4KM4aupyznTlDm1QI8aocDp47Axt2HmUyT0OD12Dp1D/bs2oa/BUcpfusTnZnTm6lymgasr8DWyphCC+7qLI7vjBHU2ST8q94eimqVqIhHmfz/98hRp1GM7KGOZWa/jfnjpzgUmvjqv/ny79zrcdr16F0Y3bf71l2YWlO6D3OLY86U70Ab/FXQe+ppWzBlmMBR97yMHpzJA2bMISypwxrQXZVT790HhFcF5n/9pUv3opbUsHuKZOmYxaNapMao9p17QaW2BP7ZythdCrzmLPadJpBFuOlWUXZBcuQMDx+DfnmHwjsDbHJ3qk7uB2c/DYaQuyi2QY8CdOkTwxu+Zkz/qhdncjo94N84Uge6qePfXvfx7yu/bz5T/Y/Q83A+ZuDA8fP6V2vcdTzUrFqVnd8lreRU+8G1o67qOVCOH1kolbv+MITVuw8S0rICLUY8WKxYFKOguuqfqMmPWWzy4sFLAq582ZjSqWKqizSTJ6jH/8eZtP7SoZBEhvi24hVLRADr7yxMcJwUOwlOogaACr38g5fJVrTnYhgYN2IWZuroesA1yQwpbdR5M52UW9UIoAadowf4TWbEio++vTFwjR/9A+VgVX490HT6dJw7pQ0YKf0f0Hj+mnS3/Qum2HqGKpQlSlXBGnMQ7oM57y58z2ls/ur1f/pKkLN7KMFyywOgt8W2HNMdeqNr8NgUsAsiPuOvg1Byi2qF/RwuLuSF+gw6syVtnyzUR0PoJpzh1abCKisECjwG3HmYJrcczZuMEd+XGQXgRhwmIPq7Lud0ON0Z527sLVu+j785doekgP03BcHaNq05a/O97JknW6W/j747CPg5UrAbtGvxuyp+rfU3HjASOCtc/u4yfPWK2iZ7sG7NqhqzjzbuhqO7rVI4TXS2Yc11S4qja/8gZhWbf9MG1aMJKSJknIPm9HT35vV+fS0aHgxKpLkD0ybUdmjLD6QFpIl7vBuJmrOSBoaO9WTA7w/5MmTkhIYwtdyYJ5PqH7Dx9z9DhO9K4WuBpAS1mlplR+YAhMQhsoIDCwjKZ5P7mrzfGa+fGXqxa+s4p8zhvfm/9d17oBAYEVBOl+q7fsT83rVWR/YVh1FdmFmgL0Vht3GsHXgz3bN6Bte79in9/BvVo6NV4j1ymySUFu6cGjp1TTP5gTbOTPle0t158la/ewNajcF/mpVsUSNHXBBurSurZLrkf2fDNBamCthAUUBfOAlKhw24HPrzMFNxG43i9fsgC1blyFDyOQnYJ7CpKAuOPdQD9t+bvj33FQzJ4tA7VpXFXbGFGRPX93qJ0gngE6rNA+BtkdPmkJ3wThut7R4ql3Q/ZU9+ypSJQSmWRFcH3QZSyJ7Lvh6NqU3/+HgBBeL10NiuwqiTBlGUGub1jWdAliY/jY7Jet38tXptj8zQsIKHR7IVmmW8fWeoxKdgpEcPKIrk5br8z7jw1p7rJttGTdXpbRgkoDCq7fUyRNzBG5a7YeIgTUwG9aZ7EV9ABrE4gGiErHljUjtak60idzSyvIp851s3XvV7R++xFaPKU//XP/EQcDnv7hZ/bNhGUX7WEtQWHkxLfn2WoJcfoUyZIQMhjpcDsAgQExs759gJXkx5+vUNrUKVzSPoaKAMg5LLs4mEAWDQcKFPUuqqvNZ89f8HuIpCaw6vvFiMHKFc4WW76Z8J3sGDSRNi0cye+gIrvwRR/Wu5VL1nv4EENaC7cES6YOMPXdne+Gtb87sEKWQqytLYtD+KCoc4y2/N3VTY9yE1Fk98efr9LCif0oSWLHrebe8G4AS9lT9e6peNdxEG1Zv+JbAcCzlm7l936Ikwd5630iMu+Gs3uLPPcGASG8XrgSIL6NaxVrsgtCWKVsEVq//TDl+SwrDe3tryUKHyS6Y9AkCwko6MyOnr6SFQ3wUX/0+KkpCh+kCs/0c8HNwnqMiux+XiAHQQoKV7sgHbhe1VGwMcGC++XXP7CfKySFcKLesWw0xY8Xlxq0H8bZxJAdDcFuuNKCBc2VAjkfXIOpqzF1tdrJvybdunOPDhw7TVNHdqdc2fWocOAaGskbFPk0vz7WsW5ADPqMmM2Q9GxXn77/8RKNnLz8LbKLq2noD4Mw/vDTr9r8luFu07jjCA6oMpfVg3tO6LQVdO/+QxaLr16hGKfTVm4CjswhXDGadhnJ665quc9pzZZDtPPgybfILoLIoFYxe+lWypsjq+kg5UhbEf0WZBdraNrIbizNppMImreNdwMkH7ceEb0buMGIGcNPW1ppkF342a+cMYgPK+4aoxqvIrsNa5ThA6cOsou6Pf1uoA+yp+rfUyfPW8/fwI0LRlpkzgTZ3bDjCK2YPpDSpUkZ0avs1N+t3w24HW3dc5xw0K5brSSVKZaP60XA63vx42oxEDnVUR96SAivF04WLD2wWEFL0pbPG6wWtdsMogHdmrNVTUeB9JLyS8LmDY3Q+w+fcJQ8rqbxskGPFRGsID2KVDnbtvkYFdmFBiKE+CGlBasyAoRObJvplMXFVr/QTtXm/enwhslsyQaZgPsBkhfgQ4t2py/cSKfO/MSZ2gb2aOHs8Pg5EFDUj6sxW36ESNGLyH/IQukoWBewgOb6NLPb1g0s5lARgdUjY/o0rHaRLVN6k2VXkV244KiiU5z+zl/32V9X+eyqICEEP9WpWpLVRXCQ+ezjjyigaTWnYMVagLwV/DERyR/YviGvQWXZBdlF9iVzQq07eQMOZN0GTnM72VUARfRuXL9xl62wmPdRQW1cct1QbSqfaKPILpL6NOk8gnSTXTUeT78bsqe+SXuue0+98/d9C79uI8iu9bsB8jtzyRbq0roOvZ8iCS1YuZOTU8ElD1KNHVvW0pKu26kN04ceEsLrxZNlL8ADARe1Ww9kX9561UtpdaAHHLDeBg6bRbtXjrWI8MdVJ9IhwpdQF9G2RXbRh19/v8E+lKOD23GQma4UvUgnCc1T6PRinCC4mxeN4lWgZMyQbnn/2ona3A1skV20B61l+H5CLg0+y7oCrzyxbsbMWMW+vLDsKrKLdM8IboPsFuShBvVooUVey/yVxXV/hg/SWGjH4sPv33007V09XtvbrXSVrcku5hC3MTigIZV0UJemWg5oGMMf1+9Q4XzZTVZPuHK0b/7GZxfk6nXYa7b86vJ3f9e7Adm51r3GMNHVlWHv9A+/ULrUKSwsu+4cIw6EB4+f4VsyZdnF/MFvOHGi99jI8Pr1a0qf7n3WzdZVjH43ZE/Vv6eqtYBg4FFTltOaOUPZIGX+74dPfK8tQ6L5u4H9ExlEcRupJExxeMP7+PzFS7fokuta+95WjxBeb5sRs/7gehYnvTZNqlhovMIy+ezFS6rwRQH2P4Wigk6ZJLTJgV6B/qbeWPuG6oIN7ezYf5LaNqlqcs/Ay9yyeygrGsANAf7FfTo1ZkLhalFWmANfnuaIbJyMITEDstuqx2i27EKfGBmi4JuJ63NXC8jCw8dPLIINFYGAVBOSVuw7+i1NH9VDiyyTJ9YNSH2mD9OayC4slAis6tCiBvk3qMyuDbC8rp0zVOsVIG4BRge358Ay84Kra/MPkqtziOfx4YEPuLLszl62lVZtOsCuN9Drhf4rDlErZg7iJAc6irrih/8urDmh01ZS/65NuWpYlePEicWuFzoCZ+y9G3BjQIDXgG5NadehU5x8xNlgOVuYGDlGtG/uxtC7Q0MOuMQ6TZYkEWOKovYeHXNo9Lshe6r+PVWtg24Dp7IsYZPa5SzI7qCxi2jBxL5a4hSs1xzILpSEVEAn/g5d8oYdhnE/dKRX17HOfaEOIby+MEv/30dbGq/KvQEyW7qyXEHOq17AUFNwnC2yi5NlZKJYHYVXkV1YYeAnigLVhrpth5hcERyt09bvoTYAfVeoJcBvEwQbZBcuG3BtgOWnarki2gP10BdburlICAKfXndoHxu1bhTOIA2QfMIGDQUAVaBt+8f1206rNdiaR/juoj1r95OLl/+g5Rv20R9/3qFyJfJT8/oVtJBC1QdYIqs2D2J97NyfZTF1DR+nmhWLabnyR6V4H6DUggCr3/64QT0GT38r5Tj86+PHj6ttfObvhvILh34t3gfcLm3ff0Lr9anRY8T7gIDLtk2qsTUe6bitb7Ng7X389Jl2v0gj3w21KGVP7a7jk8F1wKUHGs9ThndltzhYfM3Jri5FHPMOj5y8jFIkT8KylorsuivjpDagvLQiIbxeOjHW3bKX0ADBZZCI0hn8hLZ3HzpF0MaEhfXs+csmn12kfMW/f/n1/9i3F0QbPqM6iq2NGfVCKqpt4Fjas2q8tmt/8/6CpCRPmphG9G39VhAgiA0i73VYeu2RXfw7LPWwDirpMh14og6j143akJEl7bs980zybPh3JFF4/PQ5fZw5va7hcVAgtJahWgCVEShBIPgKKWVhecV/L123h5Ui4I+uq+CjhwASa2WPM+d+oayZ0rtF7g9yb3ArMtc/3rjzSxoyfhG/p3CnqF6hqK4hMrZVmvVjv3pbV/y63w103Ogxos0cpVvRyR2zTHMGbW4kykAwEKzq0CZGUJ+OAsucUe+GOjDhMG9uQJA91fmZBKGF6s+uQ19T9qwZOAOdsuyaK+LoTGwE1zDMIVKOw32p78jZJjcGrFXcDmKtliiU0+Lw7fwoo+6TQnh9ZG5hyV2wehe1blTFQuMVwWX4mIN4osACozRgXR0aLEewYoUOaM8+u+qaGn61uEZFYoE3WpaWvr7OtouruD2HvuHsT6qolLLIUKYUG3SOEdebRap1shCgN7V95x77EbdsUFGb0sCpsz9xOmlEw6sCCzqSKyBDGQ4RKLos6J5YN7gaL1q9CykdYFvrYf+X3/FBSYcWMfxrQT7h2oPsgXBzUBZJtI2sc6Xq9tS2TlGnSvjx5eZpNt83rCtEcdeuXELbYQluMLBMLp8ebIK0bINePNZPsmRgkg8tYBW97ex7qJ5TWrXHtkx/qyp8YHW/G2jE6DHiQJi3QoBFOmVY7eav3Enr5g5jRZxNu47RihkDtaRaj+jd0L1uZE/Vv6dinSLpTeNOI98iu/CfrlmpGLs65cv1sTbJMty6rN166E3gWqva7MYAIgx1pUwZ0lDeHNlMN0E6MzK6uod42/NCeL1tRiLZH1sarzhhNmw/lEoUzk092tXTcsWpRP+xEZeq251993DSVAX5xnFlXKNisUj2PPI/U2S3frVSJj8lBAfVaTPYgtBEvkbbv0TQ0bmLv3Egm3nmKlw/rtp8kEmLroAy6x7YchfZd/Q7GjNjJcukwYqgsxi1bkAaZi7eQoN6tqR8ubJZ+LTC0luhcR92WdHpCwqcdh08Ras2H2BSCNcUFFxPl67X460shq7iiiyIt//6h7q3qUeZM6azSMeL8SPwE/JpsBLqKJAPgwzaoJ4t2IcPckhIEAGSDyxBwnsPn/WWy4MrbSP7GqxKAc2qWewn7no3jB4j1kavYTPYlUj5feN/KzbuQyD6sJzDbxOWcwTs6SjvejfcsW7M+yx7qr49FTeScImzFSSMfbZ8w0C+sTN3eXJl/eDwggQ0zepWYINI3baDOS5EZYPE38s1CKRvds1x2/fKlf57w7NCeL1hFhzsg03S8u8rtkDgimP4xCX8/5XV18Hqbf4cvpD1AobQiW0zLCwduE5uXq+CtuxvqnHrjRmE+3X4a/7owscYvowg3jp0elH31r3HWXdXd3KNd2FvTXZh/YkZIwYTNcjA9Q+ZSwsm9uOEAzqK0esGNwJL1u6m3h0bsXSZeYHI/2cfZ9SiI21e76GvznKQ45Ip/U3/jCBMWJThCqDTx05Z445/e45CggI42FEVEEIQUMij6Syq/xjP2IEd2E2kVutBLG0HWUGI1+MDqysDFG554Fuu4z2LLA5GjxHtIcgQFuupI7txJPzYmavpwcPHrKACqT9okSOVtI7gQOBg791w17pBm964p4K4PXz01ELjNrLrxNbvjN5TFdm989c/fKNl/v3A7Wf5kgWpaZ3/AtxcGZv5s3B/Q9KYncvHWtww4XYLJBtqMlLeRkAIrw+uClxTL167h/wbVmKCFBQyj53n4XYAP74PP0hFzTqPol4dGtDn+T/TMkK4ERSs3N4kjYIP6sJVu1iUe/OikRQvblzqN2oODezRnKOdXS3mp1lYdWFJBoGAokLXNnXpxYuXrKl7aP0kC6Lharv4uEGeCWTCPOvc5St/0lffnWc/v8plipg2GVdcD+De8PLlK543bNTA7/mLf6lX+wbUsGZpOg7/sFU7+TpVR/HEujHvNw5j7rKUq3ZA6ht3HE6liuZlRYX5K7fT6R8u0bq5Qyl9ulQUNGou+0rrzlaI9kGAsR4gAu/OAhJaq/VAk98+AvdAtuH2gwILZbs+4zkt8ofpUmnrir13A9rIOw+cpA/Svk9liufTolDhiTEiyPHb/12kqSO6cQat0vV60qmds3kfwLz2HDKdalUqwf6wOsu71g2I8UcfptHi+uNte6rCNG3qlNpUhozcUxXZvXj5d76Jgza9KgePnaHug6fRwfWTtMyd9XqDstGRk9/ThCGdTH9ScqInd8zkgxluL5xJvqNzbXtbXUJ4vW1GHOyPCi6bP6EPXbz0B6d1HdCtGScHgFVGp6sBIlRRL3yE8P/xUVAWSIjSw5q3fv5wbVYQBcWIycsIl9PdA+pxMB38o0KD23FWMd3EBRnedh/6hsmCImfzVmynqQs2MpYgqNjgVs8eQk+fPueAqSkjunLQlLMFHzwEHnZqWYt1VXFtDYtBw5plWMrLlg+ls22p54xcN2gTQV5jpq+0yFiEDXnT7i9Z7guELaBJNZNlAoGKSNoRI8YbtwRHClLmzli8iX648Bvl/iwztWtWg5IhqGvUXHJXtkJY5kZOWc5yduZZ4HDIQEDiie/OU54cWVmiTQchRqrmIeMXU8nPc9OWPcfZil6t3OdMdlt0C6EGNUrzetJZbL0bi9bsoolz1rFkIA5rf968S/Mm9NGibmD0GPEejp+9huC7DEk7JB7ZtWIs/fvqFZNdP78Y/K7H1SBVqObF3rrB33HLg4P+jNAeLAWns3h6T1Vk1x2YAicj9tTB4xbR1Wu3aM7YQHZ7+ShDWmpQvZQp4Bt61brcYKznHt/eOm0GcXxNobyf0OrNB1nzHG5wpYrm4URHIVNXsIoMbnulvEFACK+PrwQQz0PHz9D0kB48EpUxCcoCa+cO0xbApmBCutg3Cg0fsDUHAXIquG1GaE+TDqFOax5IX45PPmLfJRQV5FW3akka2a+N9hlEIIvaJIAvtE/hE6r8aeHzi43u5OkftYh+w1oOn0FcRSniPGPRZoLO65jg9loPLQoso9cNLC9ffXOOrddw2QAR7DpwKlvt4YOmpKKWTgum23fusTaqOeauTLJR2QpB/tKnTUUVSxXk7uJmAlrEyZMl5oQRZ89dYuvyqllDtLyXGNeO/Sf4uh1+tnBvaO4msqvwN383YGWCasTKmYNMyhtwH4GMIJQNdBRPjBFJbyD8X6lUIYoXLw5nnXQXMQNG1uvGnOyqtNI6sDSvw5N7Kua028Apb2EK8o/DqnmWRmfHbcSeqg5GcGOAljSMIkdOnOU9vH3zGm7R5DXHA4omQSFzCWop2AMG92zJBhOV6ChRwvhUskgevglWCSucxTOqPCeE18dnEq4G9QIGc6Bak9pl2fIKnztYmXRlJ4sIIqRhhdzUkF4tCcRm+sJNFCd2LFo0OSiiRyP1dyVL1sm/Ngv8KxmmsYM6mq5Pcd16/+FjrZYQWAnKNwo0Wc9UZxEdW73lAFO0bKQGEcGPoMOLIK/+3ZryFRiChawDBHW0o+qIzLpBwCKCJNzhvwlrBAiwOfk7fOIszVm6jZDm2tXU1SaC9irMZNmdOy7Q5GPn7myFaL951xD+0JjL3cH9IGmSRCZNTV1zqgJWcQjt3raeqVocPHsMmU59OjbSHgDZqMNwjkhXB1E0ivYQOW6uJOHLY0Rg4q9Xb9DssYEmyy6I2bhZayhzRlj0SusanqmeM+cusZV+wYS+TGBUwXuB2wEdyiaR2VPd9f7DYIDEP0unDTBpuStMEZ+hS5rR6D1V+0KIZIWQD1Tud+ZZPcuVKED7v/yWdYJ3Lh+jzU86kt3yyp8J4fXKaXGsU/h47zl8ii2RyLOtyC5kTOLFi6slQ5m9HimNwOF929CKDfs4Yhype+tVK6mVKMFPcMPOozRz8WYOLjMnu7gar+E/gKPW8ZHQVVBv7nJt2IdWJfWwFeWsqz1YO+Eyguv/oC5NTGoYwyYsoca1y2onLPbWjRoPBM+h8Qi5NB1+2apeWF/ylGtLy6cPtMiQpiz3OlNXeyLrHMaJK8dSdXvQ4Q1TLD40uKa/eu02J3HQWZBoo0W3UFL+e4p8dug3kdKkSk5jBrbX7mqEIK+grk2peKGcFkOB9R43JPCn1pmcxugxgoQVrtrJ4qZBEbOjJ7+nZdOCLVKv65pPBB4h8xtusFSB1RmZIHVlnES979pT8Xd3vf/IFFqsYE52jUNxJ6ZG76m61oAz9dhLYQ/Jy7pVSmrfc5zpo6efEcLr6RnQ1D4sPBPnrOUUvcqya2uThNXSGb9Ie91kx/xjZ9h/EJt03Lhx+Bp3x/IxbH0FicmUMa0WqwQ26MVrd/MVuHXqVlzrgGzrDoqChefSlT/5ihYBgtYZboA71K90RW8jCxusLwjOU2XvEZzSF1p8eHXNo611o9qF5eDe/YeU4YPUmlbpm2rwgctZpjVLQZX7Ij//m7tSV1t33KiscyrIc/fKcZThA8vAMRykfrr8O70Oe02ffvyRliAv1AnNbPjvQ+MZllZrsgt3J7gbwP1BR0GQFydLGd3LYgzrdxyhaQs2crrukp/nYQu3jtumyIwRLleQitJhBQVGiITHYQ8Bgdg3Ydk1J7s6VT/Uu1Gr1UAaGdTWdCWu9nHccKmIf10BSe/aU931/iMQDy4Vk4d3pVzZM7PftDmmWKdIbgS/dB0puo3eU3W8W47WAa1xHJSGBPpThZJvXKrUvgrCC313uOR1aFnTpPXuaBtR4fdCeKPCLL5jDGqzxBVxobzZCX53SJnZuFZZLSPHByZB/HimYCNYI6G7igj5cbNWs98i9G0L58uupT3zSnT6CdvrHD4skCyD+DxO0Er0G0EX8NlCCmJsNv4NKrF/qrsCBBTpPbB2IqdDxdV4zUrFKecnmbTiirHEjxdXu1yYdSfheoMkCr3aNeBD0sAxC0xuDPBF3X/sNBNCWPNhuddRHMk6h4/u+FlraFif1k4HmUHtA77eSAyhJMuUpB6snwh+ihM7Ns0c3VOLpRDWLASqwEf68ZOnlOWjD0yWXYzHv8doJoKTR3TVElSGQxf0opHZDjrAUC+A3/n67UeYzEBOD6QYfzfXRXZlLt81RryfcCOBK1DHljW1WJch+D92xioOZANph1+2suyaZ9bSGTwLxR3IovXp2JjSpk5O3QdNI3Oyi+DBi5evuSV+wd77j/3u0PGz2qyEOOBiDzh84nu+lVSYqnV69+8HFNy9GSc40hkkaL728PwT5AAAIABJREFUjNpTXVnvjjx7/8FjC/9nlcIeSg4IbsVtHdwbdCsbOdJHT/9WCK+nZ8CA9kEgUr2fjK2Q8Lvzb1hZ28Zl3n0VpAOH/Snz1/OVfIv6FfnDg8A6+N/qStHLVtAuozhq2vxKFS4WSDwAiy9Id5M65XjcIBjAwVnnfbiH4OOHDDe4koefIgrIPKwQo6YspywfpdOWkc3WsoAWMqyF/zx4RCVqdaN9ayZwNLmuguDDgN7jGbeubeqYqnWX0gAOY/D3hqascmOAYkPfkXNY6D9+3Di0ff8JVszQoWcb2axz6qNbumheTqurElg4ijPWybwVO9hNZenU/izbhchqpOmFny0shnDRuXLtloW8kKPtWP++38g59Do8/C2y+3mBHJQqRVICYcItiS7fbEj2YX/55/4jtjJDE1gdxHBgrNC4N+si67wpsB6jus7t5F+Tbt25x3EMOtOtw2qNebQmu+5S/QCmS9btYVI4sEcLk2UXczdl/kYmibDktW1aTVsaa3vvv7miwvSQ7tpus+CTjHmEygFu58zfu3rVS9GaLQcJqezdofyj3hl376muvsvOPq/I7vjBHS2yekJVqFHNMtql9Zztp9HPCeE1GnEPtgdR+i7BU+jQ+slusUQiYnvdtsPs3hDYsaHpWhGbNPyLEYyAK04dLhXQlJwyfwNHpio3BlyvgoiCLJUtnp9WbNzPGpbITAV5H/zOXLfQ2anARwiBentWjTe1jaC5gN7j3CIhZt1PfHjPXbxCkL3RWUAIIa3VunEVTmKA4m6lAXPdTHwAa7QcYJLWQfvb952gtdsOa9MiNsfLViIOXWTXuh1YqXBNCzm4tXOGmvQx4WJQt+0Q+nb3HG1TCf9hRLrjoGdrPJhTXH+e2DaTbwt0FbwXeAfN9UhxLY7U3UjBnCJZYl1NsY+0GqMt30WsG7z/IN86Ct6NJ8+es3uDUaofIC04FKrbOOyjc5ZtY9KNWw+4jcDirSs42Nb7b4R8GL4H9t47GGjaNa+uPbGRUXuqjrXnaB24+azctC8bY8xT2OPdhCvJvjUTtajEONovb/i9EF5vmAWD+tA/dB5rmwY0rcYtYoM7//MVbT59OI3DGlYg938+gmqThg8crq9gRYBVFid6nUWlVRw3uCMTbhRY2JCAA24GiG6eNqq7lmtObBrIZmXuFoKPE4I8EOCFD2L469farNnmOCm5nYlDO5sC6XCVhRS3ujKymbdnpNIADhEIeDQ/lEBXtnbrQVoJIcb3LrKLNarmF9ZuXQXvH/RUzS2rIIlwl1GqBrp8M9FneyQCJAoBZ6OD21HRAjm0+NeiPUh54d2Adi0E74Ej/hsuMngvdfu7ok17gTpwNZq6YANnSoPPsi7ffltkF/1wt+qHOdlVt1RYw7jpUVn2dK1TVQ9cVroNmkphYWFsLVeuBfDBP/Hdj28FKzrbvlqneXNk5eyg6kYFLkjI7gkXFZ168tb9NHpPdRYnR56DTFqSRP8dZlWMhLtk7hzpmyd/K4TXk+gb2DY2FWQOOr51OreKDwJSsMLPD9ceOoJKrIdja5NGENjLf1+xX6POsnT9Xjr53Xm+GlcFHwRYtGP4+Wkju6gbWqMg2EMD/bkpXIshs1VAs2osU4Rx37j1N1+H6y5wDUH7+Mgp940te75ikj+4V0utmXWMVhpAgFCOTzJRwxr/ST2BBF+/+Rdbs0Hsn798qSUgyTzrHFxurMkhFAEgDTe4l79JV9fVuURWwl2HTtHs0b0oZsyYtPvwKb7ShcUOh0TdYvFYo/DZRyCrIhG37/5DLbuHUtkS+Sl50kS8B+iM/AephzsR3EGQJRD62dNx0IwX1y1Z7r45e5EePn5iYQHEv7XuNYZ9QK/duMu+i9NH9eC+uFo8ofphfkNmbrFT49RtqVcYwZd40tz1tGVxiMkiaK6osGH+CKf921Ub6r3DARNuHKtmDmJDAcj2zCWb2aVj+9LR2g4stubfyD3V1fXnzPNGBQQ70zejnxHCazTiHmoPJAmJEhCtuW3fCapZsRhLXWXLlN4tPbJFdtEQEio8ePSY/dJ0FmzOKzYeMFnKbFnwdLWHa9qmnUfSx1k+ZMknuBggaK1flybs51u5aT9aNm2AS9nX7PUV+dmROhpkFC4q8JGGfJFuiznaf5fSAD5I/7twmf0HcWjSURC9PWLSUiZISRIn5LUCiTZYzZFIBYclEMX+XZvqaM5Uhz1LqAo6M7+ihytJruzOBQoCs8HjFnLiltTvJ2diiMQiUKowQixekV0ElyHIDEW5VBzeMNkilbazAIMQ7Tv6HUF+7bOPM1K5LwpQeDi5NcudeV9t+S5CjxU+vVAF0V3crfqh9lEErR366gwTdyT7gSsD3LRqVymhPaOewmjXwVPsQz97TC/+J1vyYa7eSAQOm0Vp3k/GxgEoYECbu1GtMrRt7wm6cfsvUyZP3fNmXp+Re6o7x2GrbpUUChnZkMI+uhchvNFkBSAKHi4HLRtUpOoVipmuO+DvAwvIzTv3qEShnHyVq6Os2nyQihb4zCJITPnYwocY0kE6ixLez5k9M9Wt+gUHC+EqTrkxgLyBoGXOkE6LAPfTZy8IH1KkAEYwnpJ6gkoF3CdAflGAee5PM2txb4BVsoZ/MKVKmYya16vAVjol2+MuZQNbSgNIEDFm+iq+FXj46Anl+jQz+4vp8M1Wme0QLY7r/+F9W9OH6VIRfKThXrF75Vjt5L5T/8mctATWJWUJxccd8np4HxQ5BMaNOg5ni5cr/qgIuATJzvNZFiaZRojF2yK7WJ8qAYG5P7ru91KldFaJP7COa7cZRAO6Ndf6EbYXqIPUziyfFtpT59A4O2DvEbPo8eNnLM0GIoqCvQGpwl0NmsOhHVnegro05X10zIxVtHHnl6x4g+BOyEB2bf1GLs0dRe2peT7Lyqmqdxw4+ZZ8GN4d3BA6GwyM7w/2S7x3eOf2HP6GTp35iZN61KpUQquPuS2MPLGnumOu3lUnEojAMCFFUgtHmzWAzQtX+/CtUwVX4gjyypQhDeXNkY3WbT9Mnf1rmwTBdYJz7NQ5guC4O32IsHlBzgrXxFBuANmF3xky+0AeCVea+MB38q/llgxJsGpB+xTaq7DATFu4ic6c++WtBAuu4KrkrMzrcKeygbXSQNjrcGrccTiTB1yvwmrZvt8Eqly6sLZ1gzqfv3hhyoqGD2HrXmOpWvnPed6QfnT1loPsC6vj4IQPQrve4ym4R3OT9inWDK77Ny8axQQbKh2ZMqSj3J9l1uIHrubPKLF4uDfsOfQNtWpU2bR0VBIV+NfrUmwwX5dG+7siAPLZsxcWgToqmQluCXC7pbNEVvVDZ5u4Ybj25x3K9WkmPgi6u2CMB4+foSHjF9uUD4MFEb63DWuW1Xp4cfe4zOs3ek81cmzSliUCYuGNpisC0bd12w5m3zdIFKGowK9vds3R6jNlBNlV02jtm4krQUTHL5zYj60QIDflGgTS6lmDTdrBOpYASBkyXUE+67c/blDyJImoYJ5PaPv+k25Js6r6bJSygfoowK8VrhxIVasKLN1ffXuexg7soAPKt+qAXiYkmuaMCaRVWw6wcgPcAXYsG+20Zcm6EQRvtu45liqXKcy+0Ui4MWVEN/o4c3om17OWbGFpLV3uG2jfk2Lx9jIG6kzR7Ql/V/N5tee7CBk83EroSk6h2rTnRuWuFL1uedlsVIqDC3zp4QtuLR8GVwR3+LsbNTZb7Ri1p3pyjNG1bSG80XTmccWHIKGdy8daSJRArgjWu6yZ9PhlAl5YyuArbJ4X3gjYQX7zVWxnskaqNpG1DKmCkf5YV4E/bZPOI00Z50CMkOGmfbMafAWJv+848DX17dRIqySckcoGwOqL2t3e8quDuww0Zjv719IFp6keuKJUaxFEObNnoqt/3GJtZ9xSwFUEEd0oOGw4q5Vr3mG4GSD6PGnihFQ436f8XliTXd1KA54Qi7dHdt2Volth7Ii/K95dVzS77ZFduKVUaNyH3VQQ/a+rvCtmwF0penX13ZF67Pm7I4nMr1dvsAKPrxej91Rfx8uX+i+E15dmS2NfEb195OT3FhJQIMEIIji5Y6Y2cXGNXXa4KqgnQNbm1M7ZJj83Zdke1rs1Fcr7CVsnPs2W0eG6bT0AC7myGp05d4ng/zojpAfNWLyZdh44yT6LVcoW1kLOVPsRKRtoGZhZJZCZQrKLLq3rcFDb3OXbaOPOo7R1SShH/eOK/oeffuMgPh0FLijdBk5lBYxaFYtTjJgxWFILYvXQIoXWKtbyypmDtGdkskV24Y+K92TjghFvpQx2dbyRFYsH6d665zgHKzrjv4l1evDYaWpWt8JbXXZXim5H/F2xhnoPn8UW/Pfix3MKVnN9Z+sKfvz5TUCdjkOSqtv6Zsm8TXel6HUKGBceUmQXc7J+3jALf3e4HMEnHdkmfb0Yvaf6Ol6+1H8hvL40Wxr7iih/ZH1C9CaI3+rNB2nCnLUm0f9zP/3GH3ZcX5crkV/rx0HjMN5ZldJXDO3fjj4v8Bm7bMDago/v7DGBHLmNTFfw79NdYN1F8gakVYXvKbSP8aHQnSf+XcoGCFTQHZB47/4j6hQ0iRIleo9+vvwHX3GOGdiBNYBValcEenVtXUebTqf53EC1Ada7JrXL8Q0F1BsQIAh/Rlcjxs3bgZsGUgsrNwZzf1S4PcCnt2De7DSkV0stSyeyYvHm/Zg3vo8WAXl7KbqhgQxrMFxzXC2R9Xe159PsavtGpCE376NRKbpdxSWyz5tbdnGgRYp13NjBso1DL9JJb1o40i3ylpHto67fGb2n6uq31BMxAkJ4I8Yoyv4CpDYoZC77Q2ZMn5qzluXJkZW6D57GaXjrVy/FYvKJEr7H8km+WOBK0HPoDLbiIrirbPF8NKp/AMWJHZuvykOCArS7WsAHtHrLARw8E9SliSmlqnmeeOgQl/8iv0vXtmo+bCkbvHr1Jv2xOwISQbqwduLFjW1K+auICsaVKmVStmpjTenUW8YBBtZdpFeG9R7SdiqttDs0bEGSEOhkL7MWFBv6d2vGahI6SkRi8faCwFxp216KbpDdFt1C+GCh8+pf9dWWC4A6MEFzuVLpwq4My+JZHJLGTF9JGxeMNCm04HC0afeXvCdgfwtoUs3kxgVMkKDHGes5GraXohf+0cga+Ne9+1SmWD6qXbmEzxgSIPv4w4XfqE+nRuy6AJ3jQnk/pe9/vMRBnMrfXdukebgio/dUDw832jQvhDfaTLX9geLKDfJIKIPHLaKr126Rsh4hYr58o0AaHdxe24fdaMgRNPLjxSucZjht6hTc/KylW+nqHzdNGaC27f2KrYTwt9VR8NFEwJMq5hYSZA1at/0IfX/+Eq2bO0yLT6+5soGRAYkYny2rHCxchap0pMMbpmiRgUM7ykWlW5s6TMSQQc+8/UQJ41PpYvnYnQJkW0exRzJVkGKL+hW0kjPVZ2sfVNUPEA+4k9SvVkoLrrZSdCuyCymqTi31+2XbI7vt+05kTWIcUiuULEhd29Q1ye65Mpdwb4C+K67b4cYAa3PXgVNZSQUBu7jxgQ/q0mnBdPvOPeo+eDoHmmbPmsGpZm2l6MVNT+cBkzljGMgu3GU+Sp+GhvVp5VQbnn4Ie+rXpy+w3FW+XNm0uxN5enxo35N7qjeMPyr2QQhvVJxVJ8cEC1OxGl1oy+JRFgkpQILhnwWLb1QosF7Xaj2Iti0J4eAnSFBBhxiZmdwhz2Qv0AMallXLFtGeNtPIgESljxs6IIBJiirIXtRt0DROv1y8cC4qUyyvFmsWiJ/SHrYm22WK56N9R75jV4cDaydq0fC0pTSAdkGQMEZYDZ21BNp7l6zF4s1J96igtnT8mx9ozrJtbhHlh8tK/XZDWHfVnOzC2n356p8m2TZX9gFrf1frAxMOS826jOL3ok3jqq40ZfNZuG6BAK+aNcTkEgJt6TlLtxEi9JFoRKdIPzBFMPDgXi2oZsXi3CelcQu/fl2HbO1ASYUmBIzcUwV29yEghNd92PpczbD21GgZTMe2TDNpjYII4hp51axBTIJ1+kl6CiDoAd/56z49efqMQJKQBrXvyDm0Y/kYJlO6ov4xPny867cb+qaNzo1NpA//XqfNYLYw4zChs0QmIFHXPIK8QBsUqXFVUcFXcINJljQRzVi0ia+Lg7s31zlMm5ZlNNBnxGz2OwXZdkeBRNmGnUdp5YxBfGMAS9eFS1fp06wZtbnHKLF4exZmkHpYSnW7GsHH/cmz5xb1guxCXxpWc6WMoQtXez67yAwJC6x51D+solXKFKGkSRI63TzcYvKUa/uWNrbS60Vqcp1kFx2FrB4O1bjNMT8c4do8V/bMWhVxnAZGHnwnAkbuqTIV7kNACK/7sPW5mpXAP0hgy/oV6dDxsxQybTlVL1/0zdXfqzBOEQprHawvvlhw3d+k0wgqVTQvS1xBWQDZ0XAtV6tScQ4yC522glUAnM0eZI0LPqYImlNR4ehD90HTWP4KhFd3iSggUbe/q3n/bSkNKPeGo5ummrKkYS3dvP2Xyb/ZUQzsadj+8edtqhcwlK33yn3F0brf9Xtzsov0x0PGL6Jffr3G78Ohr84yKRw9oJ0Wazb6AVWM8xev0Jo5QywUC4ZPWkrhr8NNV+I4wIEEjxnY3pRF0Zlxo96MH6Q2JahQZBcptFF3rJgx+TYEwYI6CiTtEEOwYsZAU3VQ/6jdeiD5N6xMTeuU43/HegmZspzq1yhFOT9xLrUz6sEel7NMa04zDPcJFHsSZjrGhzoQBBU6dQVtXRLy1rpwR4puXf2Wev5DIKI9Fbd40CjH7YCu74bgrx8BIbz6MfXpGvFiDxq7gJAsIn3a9zkVcZPa5Sns9Wsmu7jagW8blAfg4oAPoC+X6zfv8kaFxBTjZ6+ly1eu0+BeLalQ3uxusWaD7PYcMp38/GKw9QqZ4NxRbAUkIqpaWdTg71qySB7yb1hJ2wYNi1zL7qM51SgC9lSB3ymu4DfMH8Eauurg9O+//9L0kB5OD99aw1b5nrasX8kio5jTDVg9COvg6GkrWXEDZBoHJYwZUmlIipEkcQJq1XMMNaldVptfLxJiBIfOp0WTg0yHBfiktuk1ljbMH87BmP88eERx48ShrXuPsyuCK+8kAi5bdg+l1o2rUPFCuVjVxJzsqsAya7cnVzDGjQt0sZEuG/EEA8cuoHv/PKLFk4PYTxuWXUiJwZ1DR4FlFS4pvdo1oLhx4xBIt3JjcEeqdawbJDUpU/zNIVvNjztTdOvASeqwRMDenmoejIzbgTpVSmq/JZC50IOAEF49OEa5WsxldayvVfFRwEfCOuOWL4IA0gLfxBu3/6L2zWuYSLw7Tuz48HUNnuJ2sms+D+YBiebXx+VKFKD9X35Lg8Yuop3Lx2gJgIJ7w4+/XGXyooqyns0b35v/3R1KA2hLkd2GNcpQx5Y13b4UYYUsWLk9Hdk4hdNVQ5UCpBcprEGAdSbhQGY51A+pt2s37tDitXtY/aJquSKEAyrIL6yhuhKpoE60CV/XKmWLmCy7av2owLKKpQpxAJ25T7UzwKO9nkNm8Dt4++4/fNMC9xcE0rory92vv9+g6Qs3EbKuKTcGd6ZaRzpsWM9xoF4+YyAHYLo7RbczcyHPRIyA+Z5qHZ+BAzACIocGtqJSRfNEXJn8wlAEhPAaCrfvNWaPoECuDNete1eP971B/X+PVWapzwvkIET+J0uSiP9ifmLHplWvakltvpmwdkJJwF2WXXuTYc9XEnrBdauUZPKku9hTGsAtwbJpA7Ql/FByZQgIMoLsAiflpnF233yWlkNqZZDSy1f+pEWT+nHqWp0F9e86+DWlSJaYCSEy+SmyW6xQTpa/g8uMLt9suEgs27CXM5LBImkvsKx6hWKcctbVgqt93LbASp4kUQKuzprs6tawNk9OYZSyiSdTdLs6R/K8JQL2gpHhf454mKGB/gKZlyEghNfLJsTburNk3R46eOwMzR0XaPIhROR6pwGTOfFAutQpqXqFotSkTjmXrlI9NW7rqH/rTQz+kz2GTKfeHRtx2mBfLPb8XVWgDrRm4abSoWVN1p3VUXAVj2tcdVVsfnACYVu5aT/lzZlN20cBlk/IyhlZ+o2cw6Qd1/8oIKWXfrvO7hS4Bfnlt2vcJyTn0F1skV1gevHyNRrZr43W5uwdluat2E6YZ/jD6i62yK5/j9F09+8HbN3WpWGt+m10FH5EKbp1HVx0z4vU9x8CUNnJ9GEai2BkEN0G7Ybyt/LDD1JRi3oVxdLrRYtGCK8XTYY3dgXX1LCgqRSf1ilCoXQASy98Xt0hUG8kJvZO7Gu2HmLf5ZmhPY3sjta2rP1dVXDZhCGdqOTnuTkjG9wbDq2fxEL8rhasG0iWwdJpL3FD5Wb9aOrI7pQru/NBSK7205XnIePXNnAcR9kjyPOzjz/ioKjVWw5RyNTlfHhAgFffTo2oYc0ynLVs/Ow1FNK/nUsZ0uyR3dBpK7nNSqULsa+ojnlUZBfBePAZVgUuHUjcAuuurRTFruAKf92OQRNNWe7crWGNvkYUhf/48TN6/vKlKXW4K+PDs+9K0Y158/XgYFfx8YXn4aaSONF7pkBEuOPA/x1uQLgZgXtDl+ApNGFIZ8qf6z83L18YW1TtoxDeqDqzbhiXNdmNHy8Ot4KrQWQy2rxolBtaNa5KWyd2fNiRcQpkHkQiKhRbSgoYFwKuGtUswxu2rvIun124U5T/ooBJPgzR7HsOfUNDe/trUznQNQ579eCKGmm5P0ibknWIl67fSwtW7uCU3QhgUWStX+cmNGLyUk4Y0blVbZe6tXHnl3TpynWTGwMsuwgKXDYtmFK/n5zmLNtKZ85dslA+cKZBc8vuweNnWFGjQ/MadPXaTRo9YxVbsZdO6a8lW6B1/xCIBxcjozSsI4rCxwEmZsyY1L9rU2egfOsZeym6M2dMFyWDg7WA5sWVWJNd1VUkOHry5BlbgaV4HgEhvJ6fA5/pwcLVu1iwfeboXiYLFT740OgEGUT2K18u1id2paiAD930UT20JxjwBFYgKZWb9qWR/dpaKCnAgg2r0741E12yPlqPCYek0OkrCamOza/a4SaDFNaH1k+m1O8n42ClWLFi0olvz/us5B3WT7GaXWjBhL4WPt+7Dp6iviNnU5dWtV0mu9b4mpNdJYcEK3Phqp1o5cxBFtn+HF1vF365Sjdv32P5Lliz+4fM40QtrCFd5QsmfypDo6N1R+b3RmtY24vCV8lVdq8cq9U9xTpFd1QODo7MfPvyb6D0gxseWHZVQSAtAhPnT+jrdNY+X8bEG/suhNcbZ8VL+4Rr6rDX4RZkF9HVYWFhTIJVtLYKzPDSYUSqW0bJh0WqM5p/BPKiAoNQtQoumzaymwVR0zWPIGBNu4yiwnmzs5IAAh5x/T4qqA3Ld/3vwq8U0Hs8rZk9mIOxfLWADOKW4Osds1h+DQVuDM26jtJi2bXGBQQN6Wph2TXX/kSig5mLN/ONi+qHLkxhCX0vflwLTWBddduqx2gNa/TBPApfaZNDhrFB9dKEQw38i0H4cVDTVaJycLAujLy5Hus9Vb331qoxuvZUb8bCm/smhNebZ8eL+4YXV5HdaaO6mzKzIUNUu97jqWal4tSsbnkvHsG7uwYJoVt37rlVK9cbwLEnug+fRmiVrp0z1KXMVmqMIEogubAk58uZlTr512KZMkV2FfnF7301YAdkqHyj3pwMAgGO7iS7Cldr32zoZ0PXFkGm+XO9yX4HBQTd6Y89sXZtHULdkeXOfGw4PCBwF5Jzq7YcYLk2JMrYsWy0Nv1qtBfVg4M9sV481aa99x43BQG9x9GM0J7as2t6aqy+1q4QXl+bMS/pL1JlwhfUnOwq60jwmPnUs10DypwhrZf01vFuwHcwcaIEhsuHOd5T55949PgpVW0eZPI3tfzQf0M/XPiN+nRq5DZ/Wltk111KA86j5NiTCFQZO3M1u3BAV1aHz25ke6DIrrLU4wOLxBHwxc39WRYa0qulNim4yPZJ1++sNaxxKHJ3ljsVmJczeya6+sctDgSExRyWfJViWVca8ugUHKxrTXhrPYhNyJ8z21vuS79e/ZOmLtxIowe0pwTvxfPW7kfpfgnhjdLT677BYYN+HR5usuy6ryWp2Z0IwCKfWIMqg6N9tEd23aE04GjfdPze3kdPR9226kAig3oBQ0iRXZWNDZZmZCiDGwkymMH9ARkUfbGYa1gbkeUOCUW6DZxKAc2qUa2KxTmhSE3/YE47ni5NSlqxcT+rO8BXWqeutiPBwTjMQEHnkywf+uKURsk+R3ZPxSHOlayIURI8Nw9KCK+bAY4O1eMFR7pOSDNB/F4VvNAXL/9BiRK8R5A1kuLdCOw+dIqDnKz9aBHoBusEIsh1BSn1D51HZYrlNaXgdZfSgKcQj+xHT2f/zLWIyzboRT0C6tPuQ18zxvA5nTJ/A1uWfF0+0Mgsd+bzs/Pg1+zvjuDcoRMWU9pUyalflyastazTDSeywcFKRWPswPZUtkR+nUtJ6tKEAG5Z4AJTsVRBixoR0Nauz3iaO6634frhmobmk9UI4fXJafOuTk+et5427fqSNi4YaUpRCwtTn+GzKHbsWASLRcnP89CIvm1Y0xcfC8gbmQfaeNeIol9v/v7nIZWs091CSQDXtVv2HKdJc9dxdDr8cCGvVaNiMa0AuVNpQGtHfaQySF4hscEPBxfRv69eUc8h05n0grAhHXDDGqV9ZCS2u2l0ljv0QmXzy/BBKk4LPLBHCypeKCd3EMQzZOoKWj1rMO93rpbIBAfbSwbiatvyvD4EsH827jiCZfuWTh1g8qNXadAb1ChNnVrW0teg1BQhAkJ4I4RIfhARAtig7/x933RViuvqpp1H0qCeLah+9dIU/vo19Q+dT3lzZKGTpy+wqoO1729Ebcjf3Y/AlT9u0kcfpjFZ6VduOsAaRQJJAAAeoUlEQVSarmMGduCPO9LNQpN4dHB7bULqnlAacD+Snm0BH1ocXpZOC2Y/ehXsBaK2Yf4IVlnw9fKuLHdI7/zVd+fZVadymSImVRngEC/uG+1wR4tyGUEKclh4FbFVxDNRwvicMty/QSWtt1m2goPRZvOuIeyP3a1NXcnk5ehkGvh77Jm4VVE+uzdu/UXNu4WQkF0DJ8GsKSG8nsE9Srdav91QKl00L3VtU8c0TmScKt8wkImTkF3vn35Y5fNWCGCVCiRUUAVuD998f1FbSmDUGxmlAe9HzLt6eOirszRl3nqaPKIrZ18D2bv/8DH7e8L39PvzlyhbpvTUvnkNSpI4AXce7kdIMe0LxVaWO/Qb6Y6nLtjItxAvX76ii5d/p9Wzh9DTp885sQrWM4iiM8U6Dbm5lbVM8Xy078h3fHt1YO1EE6bOtGP+jHVwsGoTqiapUibjsX6c+UMK7t7M1abkeTcjgPXTsP1Qwlrp3raeqTW4jCF9fZ+OjXzm/XMzVG6rXgiv26CNnhXj6i9PubasAQp/UBR7EmbREyHfGDVywpdrEEhn9823yKQF31QUdwW6WSsNIKPYum2HWSLuiyK5qV61Utq1ZX1jRhzv5b6j39HIyUs59W/HljXp+s27nPr0/eRJqUOLGiwJd/irs7Ru3jBaum4vrd12iHYuH6s18YjjvY78E9ZZ7hBHgKDH5dODTcQBhPHqtVt08vSPWhUz7LkU9Bkxmwrm+cSUPTDyo7H9S/PgYFttwmJYoXEfOrppqkVSjKfPXkQJS76r+HnT8zhQtugWSid3zDQFq4HsInFTmlTJaczA9hLE5uYJE8LrZoCjY/WwpMCqFNy9Ofu+Wev14qSL2DaJUPXu1QHJMgQ+madUBsk4cOw0BykmTZyQOraoSVkz6UkWYa00cPTk/zixQtsmValU0bwEF4t4cWNT6IB23g2cF/UOxIcIyWLiUoP2wyjXp5lZnkwFl46ftYZ++Ok3+vPWXZ9WcIDWcPlGgdS7YyPWQFYFbjrVWw7QmuUOPsSVmvSlIYH+Frcff/x5m+oFDKVtS0IobeoUWlcBgp/qth3Ma79WpeKmunGIQV/2r5nAyhEoULNYvmE/E3/zIGKtHZLKHEYAgY3YUwd0a8ZZLm2RXRxCkdAkzfvJHa5fHogYASG8EWMkv3AQAQRAjZ+9hn6+/Afnn0+eNBG7MaDgCm7DjqOcnhT+br3aN9AS6OFgF+XnkUAAH9lO/SexH3aNCkUpdcpk1Lb3eIKPaNfWdejRk6c0YtJSlmXK8IEeFQ6lNKCSOGCNwB8Twv8JEsSjas3781oSGaZITKDZT5Am2L/HGDq0fhIlMpOhQ3IRHF58Wa4MwwSZyF2uDa2YMZATmqC4M/GHtRuOCkRqWb8StWpU2bHJicSvYemdNG89+4LCbxcFhgO8n4kTJqBJwzrzvx058T0Vzvcp3bz9l09nLYwEJD75E+h0I8ARB5HHT57yHCnLrvLNbt24CnVpVcdnblp8aSKE8PrSbPlYX839z2LFikkdgybxCEb2a8tpiEdNWU5ZPkpn2sB9bHjRortQZti27ysmvcvX7yVkntowf7jJzQGE6dHjZ9p9CGHdXbx2Ny2Z0p+++vY8zVi8maaP6s5X8giay/NZlmiBv65B4kML33rzq++5y7ezG4Ovk12FUcjU5XTpyp+sOxwzRgy3pXS2nhNFdq3TyOqaO1UP5NgadRjG7holiuSidduO8J9mj+nFhxikPJ61ZAutnDmYoCYhxXsRQNAldOzNyW77vhM57gXuW7DSTxnelRPGSNGHgBBefVhKTVYImPufwYoEeas9q8abIlZVqsVjW6YLdj6AgLrGVXJM6DKs9d//eJlJhs5y7uIVGj5xCZNrFJDe/iFzKV3qlLRy1iBxh3EC7EFjF7I/a4cWNencxd9ow44jUYbsAg5YebfuPU6bdh1jqbAurWq/le3KCdje+YiSK6tZsTj7Sbu7wIceB89rN+9SkXyfcnAeXMMU2cUBEVZDnbrA7h5TdKwfhoSkSRLy3NnyzUaqacQu7FoxNjrC47YxC+F1G7RSsTkCwaPn82m1ca2ypn9GamKkPt22NFTA8gEE6rQZxCmjSxXNw72F5E69gME0KiiA/w3pmOGSkD/Xxy6PBh/sDkETOVBNJTT5+vQFlnyC4sCqzQdY0B1/b1KnHH844F+MIB7Rd7YPP9LiIiUvMIwqll3r0a7deojgVtW5VW2X12FkKjBP+BGZ3+v+jTXZhatD0Ki5nNhFt2a27r5H9/rsBT8iwUn3wdPp291zojtEWscvhFcrnFKZPQRwfYrI/6GB/vwTBCgh0wzSdjaoXppwhY2gjxb1KwqIXooArtnmLNvGwTqIOJ40dz3VqVKCgxNBdv17jOZgC0hhJUn0RurKlYIECoHDZnIVkPHJnysbHTv1A7vGVK9QlMoWz88SW9AOhuYzgiPh4zhhSCdXmo3yz67ZeohKFM7lsymGo/wEOTBAe2QX7wlcH2pWKkZ1q5QUZRMHMDXqp4rsqhgXFZeAWwMkrCiUNzsFdWliVHeiRTtCeKPFNHt+kI+fPONkFB9n+ZAlWBav2c1Ba0jNCdeHGv7BHGFtnYLR8z2XHpgjcOj4GVq15SDFjxuH09VCUxLXcyC7nxfIQalSJCVkTgvs0JD/7mqBpffLU/+jwnk/5SA5SKWNG9zRFImPj0OzzqM48BEJFUTj2VXE5XlfQgDKJZ/n/5TdGJRlF4fPueMCCe4PQ8YtYjegYX1a+dKwonxff/39BpPa0AEBlCxJIho4ZgG7hb16FUbjZq2mOLFj05KpAyRwTfNKEMKrGVCpzj4CkEhCANSdv/5hC5O6+l6ydg99feZHmjO2Nz8MuRaVmUbw9G4ElGUXiUb6dm7M0cdKKunEtpnaBPiBwtL1e+kkFBv+f53g3+DG0CV4CsXw8xOy691LRXrnRgSsyS4SjKD88tt1givSuUOLTalt3dgNqTqSCOAg/+PPV0xBabjhRMDhs+cvqHKZwtS2aTWKGyd2JGuTn0UWASG8kUVKfucWBECYqjbvT5sWjqDEiRLQyo37aeaSLexfWCC3676gbum0VMoI2CK7+HdYL2r6B9Po4HZUtEAOej9FUi2IwaVixcYDrC+qyK61xrOWhqQSQcDHEECQ08FjZ9iyq8guhgDlCpSBPVr42Iiku4KAfgSE8OrHVGp0AAFc5aRIlpgSJohPO/afZEFuSF/tWD6GpcukeC8C8MnGnCExhBK4v333H5YOK1siP+svL1u/l/p0amwhlu/siFRqzpzZM1Pdql/QvBU7KCwsTCy7zgIqz0UZBOAWBvcec7ILi+GGnUdp3dxhnIUN+tmSiCLKTLkMxAkEhPA6AZo8ogcBpQ2KyHuIbdeqWJxTg+bLlY0JEnzQTp25YJHNSE/LUos7EFBkt0rZItSzXX1uAhHsddsOocMbJvOhRhV8oOM4cWWH5/YfO03QsYQ8mvjsumMmpU5fR0CR3ZUzBlHyZIlp5uLNnGAEpWHNMpwhEX7vUgSB6ISAEN7oNNteNlaQl4PHz1C5EvmZ/MD3s33fCbR1SSgdPfk967CWL1mQ+ndtKv5MXjZ31t2xRXbxG/gQtg0ca6G/jKC249+cZ8F8ZwrWzeK1e8i/YSWKFzeOM1XIM4JAlEVg18FTNGHOGgLZTZUyGcv7QeZq7dyhHMAGPXRYgoO7N4uyGMjABAFbCAjhlXXhNQgMm7CEUqdKRhd+vkr/PHjMG/JnH3/E0ccgwOW/KOA1fZWOWCIA94Y9h76xSKuqUrsiFapSbADZhbQZfLRFL1dWkSCgHwEcCO8/fEKpUiZll6OFq3dSt7b1CJkvkaKb/IiK1ehCZ/fNd+qWRX+PpUZBwBgEhPAag7O0EgECSM9ZsXEfSv1+Mgps35Cqlvuco4pV9DF0JTcuGCEpM31kJSmyW79aKVMCAJDdKfM3sqUpc4a0PjIS6aYg4LsIjJ25mlKnTMYHUZWiu13TahQUMo9O7Zwtyg2+O7XScycQEMLrBGjyiH4EYJXYtPsY1ahQzCRJZi61A6kWZFAqmDc7DenVUn8HpEZtCNgju7DsQrXhfxd+pe4B9UxautoalooEAUHAAgH47cKdAdrVKCC9cBuD5qu6dUGwGzIVShEEojoCQnij+gz76Phs6UqCFDfqOJz6d2vGeeSleCcCcG84eOw0NatbgTto7caALHv1AobQtiUhlDZ1Cu8chPRKEIgCCPz77ytq3jWEypcswIHBILZIyY1A4e37TtDsZVv5v8sWz8cZFCEhiAPrDz/9RpVKF4oCCMgQBIH/EBDCK6vB6xCwJ6IOWZ0W3UKpRf0KVKl0Ya/rt3TobQTs+exCP7dwvk+paZ1y/NCz5y/pz5t3KWumDwRGQUAQ0IjAg4dPaOiExQRVHGTvSpsqORPdRat3c0Bwyc9zE1IUnzx9gSYO6UTNu4VQ/eqlqbN/LY29kKoEAc8jIITX83MgPbBCAFaJucu3U5smVSx0Jacv2kRIbbtxwUjxPfOBVfP02XNOn1mhVEFC4JoqKvsTfLKzZ83A/4x5XbRmNyeVEK1QH5hc6aLPIYAU4NDjVXKQG+YPp0+zZTSNI3DYLEKsROtGlU1+9z43SOmwIPAOBITwyvLwCQTMdSXlGtwnpow7idS/yLo2qGcLTid99dotTgVcrkQB6t2xIYvlT5m/gVrUq8hpiEVmzHfmVnrqmwjAlx762CH9A0wDsOV375ujk14LAvYREMIrq8PrERCy6/VT9M4OIkita/AU/s29+4+oT8dG5N+wMr0Of03BofPpxu2/ac7YQIvEFL49Yum9IOC9CJw5d4kGhM6jbUtDWd9cyK73zpX0TC8CQnj14im1aUYAFsDR01ZSQNNqEuCkGVsjq0PAIaTn0qVJyR9ZzKs12b379322POXP9bGRXZO2BIFoh0DI1OWs2FC3aklatfkAmcsHRjswZMDRBgEhvNFmqmWggoB3IGCP7Pr3GM2EeNKwLpQ44Xve0VnphSAQRRGAOkPV5kHUpVVt8dmNonMsw7JEQAivrAhBQBAwFIFBYxeyL69yY4BlF2S3SP7PWBZp9eYD1KdTY6pVqbih/ZLGBIHohsDpH36hArnlRiW6zXt0Ha8Q3ug68zJuQcBDCMCnN0vGdOyzq8hu6aJ5qW/nxqzQANeH2q0H0YF1EylJogQe6qU0KwgIAoKAIBCVEBDCG5VmU8YiCPgQArbILrr/4NETKt+wN21dPIpdHKQIAoKAICAICAKuIiCE11UE5XlBQBBwCgFkZNux/yS1bVLVpL37/MVL6jpwKmXLlJ6CujRxql55SBAQBAQBQUAQsEZACK+sCUFAEPAKBEB2ew6ZTn5+MWjKiK4UFvaajp36H9356z5nZfsky4de0U/phCAgCAgCgoDvISCE1/fmTHosCEQ5BKzJ7q0796hT/0mUPu37VCD3J7Rp15dsCW5Ys0yUG7sMSBAQBAQBQcD9CAjhdT/G0oIgIAhEgACsuHOWbzO5MTRoN5SSJE5IH32Yhob1bkVIU1y2QSBtWxIiesyymgQBQUAQEAQcRkAIr8OQyQOCgCDgTgS+OXuRRk1ZRlsWhzAJRiYokF5Il3VrW5eK5PvUnc1L3YKAICAICAJREAEhvFFwUmVIgoAvI/D16Qu0YPVOWjChLw9j1tKt9M3Zn+jHn6/SkY1TKMF78Xx5eNJ3QUAQEAQEAQ8gIITXA6BLk4KAIGAfgWfPX1Lt1gNpzMD2lC9nNv7h3OXbKX+ubFQob3bW7r1+8y4Hsb0XX8ivrCVBQBAQBASBiBEQwhsxRvILQUAQMBiBny79Tu37TqCmdctTrYrFWY/36bMXNHr6Sg5gy5g+NT16/JSmjerOpPjkdz/SsVM/UD+RMjN4pqQ5QUAQEAR8AwEhvL4xT9JLQSDaIYBAtqXr9lC96qXoo/RpqMfgaXT/4RMa1qcVZ2r76tvzNGLSUgru3pz6jJhNk4Z1oS+K5Ip2OMmABQFBQBAQBCJG4P/au/u4nM89DuCfmMchETYMO5izmW0s2pgjGhlZx0Nh8zQpeVZseZgjZ1skayZaREMqKyuclJDZMcwYNmw2Nofjcax5qJDovL5X53fv7j61u9/pPrvv+/T5/bVx/a7f9Xtft9fr09X3um4GXvNGbEEBClhZQFZvg0KikBEfBud6jobRzItYg6TNnyA6bBrDrpXniI+nAAUoYMsCDLy2PDscGwUooASkhle+mW1u0EiDiJQxTJ4TyZVdfkYoQAEKUMCsAAOvWSI2oAAFrC1w9vxlDBwzFxti5qn6XYZda88In08BClDAvgQYeO1rvjhaClRYgYyd+7EqMR316tbG4WOnuLJbYT8JfHEKUIAC+gUYePWb8Q4KUMBKAnIyQ59hwQid6c+aXSvNAR9LAQpQwB4FGHjtcdY4ZgpUYIEbOXmoU6tmBRbgq1OAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwFKEABClCAAhSggF4BBl69YmxPAQpQgAIUoAAFKGBXAgy8djVdHCwF/j8Fbubk4cCRE6hRvRqed2lb7CXv5N/Fni+OAg4O6NGlfbkAEjdmqedEhEwoVz+mN3+67ytEx23G2vdnokqVB0rtW3tPaeBQyUG9r7OTI1q2aAwHB4di9x0+dhLnLlxBv16dLTrWsnRmzWeXZXxsQwEKUECvAAOvXjG2pwAFLC7w7ckzGOQ3V/WbGvs2HvtDU8MzUtL/jjkLY9X/f50Vi8qVK5l9/v7D32J0YBgy4heiWZOGhvYRy5OQuesAMhPDzfahp0Fqxm68GbYKX2auQPVqVUu91fg9jRs1b9oI0wMGo8cLHQx/HLJoNZLTduH4rtV6hqKrrfww0aGXH0Jn+sHLo8vv+mxdA2VjClCAAuUUYOAtJyBvpwAFyi9gHAQ9ez6PsNljVaf37t1Hn2HBOHfxiq7A+/mX38B32kJkxIehWZNGNhd4V4RPR2eXtriZewvHT5xG1JpNOHT0e0TND0S3559W4827dQd3CwrgWPvB8gOX0sPtO/l41sMfbwf7ov9LXQ2tfo9n/89eih1TgAIUKEGAgZcfCwpQwOoCWuAd80pfrEzYYgiqWbsPYfKcJRjh7YG1yZnFVnh37z+K5XGbIb9+b/pwA3j1fgF+r3oi+5cbeC1wAc6cu4zHWzdXK66tWjRByPRRkBXetB37MG6kFxJSduDcxavw6eeGkT690dC5rnK4e7cAH6zdhC07PldB27X945gWMBht27QwOJ08fQ5hyxKx7+Bx1KtbG40bOePYd6eLrfBm7voCcRu2Y1qAD9o/2Vrdq72nBN4uHZ809Hfrdj78X1+kQu/BrStQo3pVtbor/WvlFx9t2on9h09gwigvxKdm4cczFzDZdwA6tHsMpVlUeaCyesbZ85exOOZjHDl+Ur3fs0+1QcCIlxEZm4Jde48ovwb1i94/ZtHrSNuxt9iz5c//tm0vYten4/sfz6kVeN+hfSE/nMgl4/ebHq7+/+BX30FKPP7YqhmGD+qFXt1crP754gAoQAEKMPDyM0ABClhdQAuCHy2fizfeioZrhycwN2gkBo+dB5en28Cpbm28tyLZEHh37/8aAcERqr71xa7P4utvfsCqxHQVLr093bBk1cdISM3C+JFeqOdUR4VSD7dOKvBKu0YNnODTr7sqj1gcs0EF5al+g5SDVkowyLObCswStCU8b01YiEcaN8SVn6/BbeBU1KxRHa8NeQkPNXBCasZnKqwalzTEp2xH6JJ4LAudCrfOz/xm4JW/lJA4fuZ7iIucjQ7tWqt32Lj1M+xMfk/dq41d/ltCrrzD4Je7Q1ZpS7MYPaQPLl/5BT28A5XBqwN6wsmxFlLSd8Oje0fUrlVTvW9f9+fQvl1RKB/k6YYP1mws9uwtWZ+reZGQ3rt7J2z95AvsOXAM4XPGoY+7K6Q2+TnP8ep+ra9P9x1RQXxfWhTq1Kpp9c8YB0ABClRsAQbeij3/fHsK2ISAFng3xMzDiVNnVT3sgln+mBG6AlnJEUjbvq9Y4O0/+k21IikrpdoVFLIMp06fx+Y1ofitkgapt922/l21iiqXrNRKOEtfF4afrl5D90FTIUFRwrNc167noIvXRLw64EXMmjxMjUNWobevX4TGDzmrNiXV8Mrq8OmzF1Vodq7naDbwXrqSDXfvIARPGKpWtEsKvIkbd2Ld0tlo0/IRw3ubs5D3k9C+IykCDzesp+67f78Q2dduoNaDNUosaTB9tpSVSMCX+dEuea7UAIubFnhnTxmOV/q7qybZ126i658nqRVqD7eONvE54yAoQIGKK8DAW3Hnnm9OAZsRMA68LZs3hrtPkApMslorpQgSMLUV3vv37+OZnmPUimWjBkUBTi5Zhc27dVtt8tJTw7s6aSvCo9ar+7TNbtFhQejq+pShb9lQJycqxEXOUqUHl37KVsFau/RuWjMtaZB+JBx7jphpqKctKfCabriT8gRzFsMnhSInN09tBjS9SqvhNX62trFNyk0C/b0NXWgrzoe3xajgKyu82oqv1qit2yi8Pn4IRvn0tpnPGgdCAQpUTAEG3oo573xrCtiUgHHglRXRuA3bsGBpglo9lBMMjAOvhLROfQJUGHbv+uupBkUv5ICuru10BV6t9EACr/wKPiD4XRVspWxAu0ZNXaBCXWLUHFVm4VjnwWKry5YIvFIjKyvaaWvn49FmD5e4wmsaeHPzbpu1kPHWqFENqxfP+K8Cr/aMKWMGwn9YP0MfUue8NDZV1RwXFBQw8NrUvygOhgIUMBVg4OVnggIUsLqAaeCVcHnh0lUV/OQyDrxSdyu/Ku/4zOOICCmqG9WuwsJCdZ6tbGQbNvEdbPzwbbR+9Ncjzko6lsw48Moqsfz6fuLo/hg3wkt1KxuyXHr7q2O75PiuoJAoyIY04yPSSgq8cp+srMopC1WrVlF9lbZpTVZ3fcbOU+E+eUWIeoeyrPBKn+YsZs2PwabMPf9RSysnYBSiEE+7++IvgSMw2KuHwdH02fKMli2aFAvNsnL8j39exO6NkYaSBq7wWv2fEgdAAQqUIsDAy48GBShgdQHTwGs6INPAKxvS3nk/Dr5D+6iNa/n5BeoEAtn4JeUC+fl30b6Xn6q7lU1YObm31EYwc4FXnjtmeji+O3UWk0YPQJtWzbAmKVMFXKmdldMWtn16EIFzl6Lnn1zUprEz5y9j2YepqgSjrJvWJrzWX51icP1GDo6eOA05gUFOSkiImoP6TnXU65c18Jqz0MK/nDYhm+yk9llOoHCu74iR3h5qRTsn9zZmTxmG6zdz1SbBqNXFN63FxKepzX1jh/dTmwSzPjuE6LWbVYmDlDpoNbwMvFb/p8QBUIACDLz8DFCAArYqoAXej1f+VQVBc4FXVidlZTYyNlXV7WqXBOCgsUWbzdYkZ2JlfJoKok890VKVI0gdsJwwYPzFE/EpOxC6ZJ3hCx5k49qMd5arel7tMj6nVp4dtiwBcp9cUkssJxzIEWqHtsWg2r9Xc7V+jc/WNf3iCa0OWUKkdz83Q9iVfuXIMFk51k5pKGns0q4sFulZ+zE/cp2ykEtOeHjrDV916oIcfTY/Mh4/nLmg/u5ARrQ6ycL42fIDxKLoJGWuXXLkWJC/t1q9lh8oXPuOK7GG940JQ1Ww5kUBClDAmgJc4bWmPp9NAQqUS0BKGK5mX0dhIVRYNP0WtoJ799TfyykJD1QuOpO2rJecznAjJ1edxFDSvbIaev1GrlqZrVSp+NcCl/UZlmxnzkKeJRZyiZXpVxlL0JdjyrTTK0oam5RpXPrpZzzUsP5vtrPke7EvClCAApYQYOC1hCL7oAAFKEABClCAAhSwWQEGXpudGg6MAhSgAAUoQAEKUMASAgy8llBkHxSgAAUoQAEKUIACNivAwGuzU8OBUYACFKAABShAAQpYQoCB1xKK7IMCFKAABShAAQpQwGYFGHhtdmo4MApQgAIUoAAFKEABSwgw8FpCkX1QgAIUoAAFKEABCtisAAOvzU4NB0YBClCAAhSgAAUoYAkBBl5LKLIPClCAAhSgAAUoQAGbFWDgtdmp4cAoQAEKUIACFKAABSwhwMBrCUX2QQEKUIACFKAABShgswIMvDY7NRwYBShAAQpQgAIUoIAlBP4FfKShG8T2lWAAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "color_dict = {\n", " 'up': '#648FFF',\n", " 'down': '#DC267F', \n", " 'combined': '#785EF0'\n", "}\n", "\n", "fig1 = go.Figure()\n", "for gs in full_df.groupby('Method_Direction').mean().sort_values('Rank').index:\n", " fig1.add_trace(\n", " go.Box(\n", " y=full_df[full_df['Method_Direction']==gs]['Rank'].tolist(),\n", " name=gs.replace('fc', 'logfc'),\n", " marker_color=color_dict[gs.split(':')[1]]\n", " )\n", " )\n", "fig1.add_trace(\n", " go.Box(\n", " y=rand_df[rand_df['Method']==f'random']['Rank'].tolist(),\n", " name='random',\n", " marker_color='black'\n", " )\n", ")\n", "fig1.update_layout(\n", " title_text=f\"{ko_gene} Term Rankings for L1000 Gene Sets by Method and Direction\",\n", " xaxis={\n", " 'title': {'text': 'Method:Direction'}, \n", " },\n", " yaxis={\n", " 'title': {'text': 'Rank'}\n", " },\n", " showlegend=False\n", ")\n", "fig1.update_xaxes(tickangle=45)\n", "fig1.show(\"png\")" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAH0CAYAAADFQEl4AAAgAElEQVR4XuydB3QU1d+G3910ioQaQguIKEhHioIIiIYioKDwp0gvIk06fCIi0kSQIr2IIIh0VJCmQijSe0d6Dy2UkJ7sfmcmbihZ2Jndu7Nl3jnHc9zsrc/vbsiztxnMZrMZfEiABEiABEiABEiABEiABEhAAwIGCogGlFkFCZAACZAACZAACZAACZCATIACwoFAAiRAAiRAAiRAAiRAAiSgGQEKiGaoWREJkAAJkAAJkAAJkAAJkAAFhGOABEiABEiABEiABEiABEhAMwIUEM1QsyISIAESIAESIAESIAESIAEKCMcACZAACZAACZAACZAACZCAZgQoIJqhZkUkQAIkQAIkQAIkQAIkQAIUEI4BEiABEiABEiABEiABEiABzQhQQDRDzYpIgARIgARIgARIgARIgAQoIBwDJEACJEACJEACJEACJEACmhGggGiGmhWRAAmQAAmQAAmQAAmQAAlQQDgGSIAESIAESIAESIAESIAENCNAAdEMNSsiARIgARIgARIgARIgARKggHAMkAAJkAAJkAAJkAAJkAAJaEaAAqIZalZEAiRAAiRAAiRAAiRAAiRAAeEYIAESIAESIAESIAESIAES0IwABUQz1KyIBEiABEiABEiABEiABEiAAsIxQAIkQAIkQAIkQAIkQAIkoBkBCohmqFkRCZAACZAACZAACZAACZAABYRjgARIgARIgARIgARIgARIQDMCFBDNULMiEiABEiABEiABEiABEiABCgjHAAmQAAmQAAmQAAmQAAmQgGYEKCCaoWZFJEACJEACJEACJEACJEACFBCOARIgARIgARIgARIgARIgAc0IUEA0Q82KSIAESIAESIAESIAESIAEKCAcAyRAAiRAAiRAAiRAAiRAApoRoIBohpoVkQAJkAAJkAAJkAAJkAAJUEA4BkiABEiABEiABEiABEiABDQjQAHRDDUrIgESIAESIAESIAESIAESoIBwDJAACZAACZAACZAACZAACWhGgAKiGWpWRAIkQAIkQAIkQAIkQAIkQAHhGCABEiABEiABEiABEiABEtCMAAVEM9SsiARIgARIgARIgARIgARIgALCMUACJEACJEACJEACJEACJKAZAQqIZqhZEQmQAAmQAAmQAAmQAAmQAAWEY4AESIAESIAESIAESIAESEAzAhQQzVCzIhIgARIgARIgARIgARIgAQoIxwAJkAAJkAAJkAAJkAAJkIBmBCggmqFmRSRAAiRAAiRAAiRAAiRAAhQQjgESIAESIAESIAESIAESIAHNCFBANEPNikiABEiABEiABEiABEiABCggHAMkQAIkQAIkQAIkQAIkQAKaEaCAaIaaFZEACZAACZAACZAACZAACVBAOAZIgARIgARIgARIgARIgAQ0I0AB0Qw1KyIBEiABEiABEiABEiABEqCAcAyQAAmQAAmQAAmQAAmQAAloRoACohlqVkQCJEACJEACJEACJEACJEAB4RggARIgARIgARIgARIgARLQjAAFRDPUrIgESIAESIAESIAESIAESIACwjFAAiRAAiRAAiRAAiRAAiSgGQEKiGaoWREJkAAJkAAJkAAJkAAJkAAFhGOABEiABEiABEiABEiABEhAMwIUEM1QsyISIAESIAESIAESIAESIAEKCMcACZAACZAACZAACZAACZCAZgQoIJqhZkUkQAIkQAIkQAIkQAIkQAIUEI4BEiABEiABEiABEiABEiABzQhQQDRDzYpIgARIgARIgARIgARIgAQoIBwDJEACJEACJEACJEACJEACmhGggGiGmhWRAAmQAAmQAAmQAAmQAAlQQDgGSIAESIAESIAESIAESIAENCNAAdEMNSsiARIgARIgARIgARIgARKggHAMkAAJkAAJkAAJkAAJkAAJaEaAAqIZalZEAiRAAiRAAiRAAiRAAiRAAeEYIAESIAESIAESIAESIAES0IwABUQz1KyIBEiABEiABEiABEiABEiAAsIxQAIkQAIkQAIkQAIkQAIkoBkBCohmqFkRCZAACZAACZAACZAACZAABYRjgARIgARIgARIgARIgARIQDMCFBDNULMiEiABEiABEiABEiABEiABCgjHAAmQAAmQAAmQAAmQAAmQgGYEKCCaoWZFJEACJEACJEACJEACJEACFBCOARIgARIgARIgARIgARIgAc0IUEA0Q82KSIAESIAESIAESIAESIAEKCAcAyRAAiRAAiRAAiRAAiRAApoRoIBohpoVkQAJkAAJkAAJkAAJkAAJUEA4BkiABEiABEiABEiABEiABDQjQAHRDDUrIgESIAESIAESIAESIAESoIBwDJAACZAACZAACZAACZAACWhGgAKiGWpWRAIkQAIkQAIkQAIkQAIkQAHhGCABEiABEiABEiABEiABEtCMAAVEM9SsiARIgARIgARIgARIgARIgALCMUACJEACJEACJEACJEACJKAZAQqIZqhZEQmQAAmQAAmQAAmQAAmQAAWEY4AESIAESIAESIAESIAESEAzAhQQzVCzIhIgARIgARIgARIgARIgAQoIxwAJkAAJkAAJkAAJkAAJkIBmBCggmqFmRSRAAiRAAiRAAiRAAiRAAhQQjgESIAESIAESIAESIAESIAHNCFBANEPNikiABEiABEiABEiABEiABCggHAMkQAIkQAIkQAIkQAIkQAKaEaCAaIaaFZEACZAACZAACZAACZAACVBAOAZIgARIgARIgARIgARIgAQ0I0AB0Qw1KyIBEiABEiABEiABEiABEqCAcAyQAAmQAAmQAAmQAAmQAAloRoACohlqVkQCJEACJEACJEACJEACJEAB4RggARIgARIgARIgARIgARLQjAAFRDPUrIgESIAESIAESIAESIAESIACwjFAAiRAAiRAAiRAAiRAAiSgGQEKiGaoWREJkAAJkAAJkAAJkAAJkAAFxMExcO1OnIMlMDsJkAAJkAAJkAAJ6ItAnuxB+uowe/sEAQqIgwOCAuIgQGYnARIgARIgARLQHQEKiO5CTgERGXIKiEiaLIsESIAESIAESEAPBCggeojys/vIGRAH408BcRAgs5MACZAACZAACeiOAAVEdyHnDIjIkFNARNJkWSRAAiRAAiRAAnogQAHRQ5Q5A+K0KFNAnIaWBZMACZAACZAACXgpAQqIlwZWYbe4BEshqGclo4A4CJDZSYAESIAESIAEdEeAAqK7kD/RYQqIg/GngDgIkNlJgARIgARIgAR0R8ARAdm84xBSUlIAgwFBAf54IXNGFCmUF/7+fk9wjI1LwPqI3ShRtBCKFMqnKeNLV29i3+FTqF65DLJmyaxp3Z5QGQXEwShRQBwEyOwkQAIkQAIkQAK6I+CIgBSv3iYdrwxBgejQ/D10+rgeDAaD/P71G3fwzv/6oH/XZmjduJbTGLfsPhJh+UIwfED7tDr++Hsn+g+bjsUzhqDEK4WcVrenFkwBcTByFBAHATI7CZAACZAACZCA7gg4KiCftKyPHu0/hDTLcfFKJBb9thHLVm9Gxxb10LPjRzJPk8mMB9ExCAoKQMBTsyMigX/cbYQsICMGdkgrNikpGTGx8ciUKQi+Pj4iq/OKsiggDoaRAuIgQGYnARIgARIgARLQHQFRAvI4uO+mL8GcRWswb+L/oXzpVxCfkIgOfcbg09bvo0qFEjh0/CzGTF2Eof3aYs3fO+XXb1cph+YNa+LilRsYO20Rdu4/gcAAP1StVAp9P22KbMGpy6cexsRh6txfEbHjIG7duY/irxREi0bv4Pyl65g4ezmkGZhXCueX0/bv0lSehRk95ReMH9oVObMHyz8/duoCxkxbhD0HTyJfaE7Ue/cNdG7ZAH5+vvL7g7+dg+xZX4DJZMLqv3bAz9cXzT6oKbfv6eVlnj5gKCAORpAC4iBAZicBEiABEiABEtAdAWcIyIOHsXijXhd5BkSaCZFmRyrU+QTffN4J9cMrY+uuw+g8YJzMunBYHhR7OQylX30J71R9DTU+6olyJV9Gk/rVEXU/GrN/Xi1LxvTRfZCSYkLzLsNw9NR5/O/9t1GyaCFs3XUEsXFxaN24NgaNno2c2YLxQZ035bKrvV4a5y9HolO/sVj/yxhZNqQ9IXVa9JdnSlo1roUTpy/KMzZNGtTAkN6t5XwfdRwi/7xsiSIIr1Yel6/dxMKVf8ttqFqppFeNEQqIg+GkgDgIkNlJgARIgARIgAR0R8AZAiJBrNWsH14qlBdTRvZ8poCM+rwjGoRXSWMuzYosWRWBzSsmyDMZ0iMt6Ro2/idsWfk9Dh49gx6Dv8eYwZ+ibs1Kaflu3r6HXDmCYW0J1j97jj4hICMmzpdlYvuqKciSOaNcxtjpi/HjorXYtGyCXI4kIJKsSLMmln0sDVp/jkrlimHQZy29aoxQQBwMJwXEQYDMTgIkQAIkQAIkoDsCzhKQCnU6y7MH0n6MZ82A/LVkHEJzZUtj3qbnN/KyqGJFwtJ+Fv0wFleu38LSmV8hYschTPlxJbb9NsnqiVZKBETaqJ6YmCRvSrc8lhmZH8cPRMWyRWUBKVnsxbQZESndpwPHy8mnfdPLq8YIBcTBcFJAHATI7CRAAiRAAiRAAroj4AwBuRp5G+FN+2JY/3ZoVPctxQLyv0+GwuhjRJfW76eLQ+niL+GHhX9g9sI/sHfdTAQF+qdLo0RApDoyZgjEnPED0vJL0iPJz+yx/fBG+eJWBaT7oIlITjFRQHT3CbHRYQoIRwQJkAAJkICeCZw/ZsLqH5KtInivnR9eLJF6JCofEnicgGgBiYtPRLveo3Hm/FWs+mkkcufMplhABn0zGzv2HcMf80c/IRhms1leCrVy7VZ8MfqHdHsxpL0hPj5GealVpowZMO6rLmldfHoJ1sCRM7Fqw/YnJGbqvN/kmZW1P49GgbwhFBB+RJQToIAoZ8WUJEACJEAC3keAAuJ9MdWiR44KSK3qFeR9HNJSqUtXb8h7NqLuRWPh1MEo/WphuQtKl2BJG7+l5U9vvV4anVs1QKaMQTh55pK8P0OanTAYDajXciAyZ8og3zUibRLfse84Dh49jW8Hd5bTSTIhLZPy9/NF7lzZcfr8lSf2gOw/chotu49AreoV0bpJLZw6exmTflguL/uaOaav3F5rS7A4A6LFaPTAOiggHhg0NpkENCKwbp8fdhxPPV7x6eeLZnH47+RFjVrDakjA+QQm9U6UK+n2nb90STUfEngmAUcFxFKwtGk8Z/YseOO14mj6wdtP3HguzYqUr90p3SlYfy8dJ8+QPP5I+zGGT5gv7/uwPNLJU+OHdpdnRY7/ewFfjvlRPqXK8vTp3ATtmtaFtPRr8OgfsOvACfktSVqkp0PfMdiwaCzy5s4hv16xZot81K7lkZZdjRzYUd6ALj3SMq1XXyn4xB4QafO7NNMibar3pod7QByMJgXEQYDMTgJeTIAC4sXBZdesEqCAcGAoJeCIgCitw55096Nj5Ds/cmbLYvXuDWnGRX4/R3C6Cwbv3o+G0WhMO+XKWv3JKSm4FnkbL2TKiOAsmexpolfkoYD8F0bptsybd+4iR7YsVm+slAacNGiyZkm9kMbyUEC84nPATpCAUwmcv2HE3A0BKBhiQtvwBKfWxcJJwJUEKCCupO9ZdburgHgWRc9trdcLiHSzZd2PH504YAmVNGW3Z+10+eXmHYfQ9+tpiI2Ll18P6dNGvohGeqSfDRg+Axv/OSC/LvVqYUwa3kMWFemhgHju4GfLSUArAhQQrUizHlcToIC4OgKeUz8FxHNi5YyWer2AJCWnTnU9/kgblTbvOIg1C0ZDWh/4VsMe6NauIVo0egcR2w/is8GT0m6ulI5dW7oqAvMnDZLXAErnMRcqECof8UYBccaQZJkk4H0EKCDeF1P2yDoBCghHhlICFBClpLwzndcLyNNhi4mNR/UPe+LLXq1QP7yyPPvR5f/G48CGWWlr/aQZE0lGWjR6Vz6RQDppoWOLenJR6yN2o/dXU3F004/y0WycAfHODwZ7RQIiCVBARNJkWe5MgALiztFxr7ZRQNwrHlq3RncCMu2n3+RzmH+fN1Le67FkVQTmLl4rz4ZYHunIs4L5QyGdbiDdqDl8QHtZQqRHOgWhcaevsH3VFHmTEQVE6yGbvr4h84OsNqJ66WTUKJXk+gayBbonQAHR/RDQDQAKiG5C7XBHKSAOI/ToAnQlILej7qNao8/w/bAeqFm1nBw4aYnVuk27sWzW0LRASvtBMmUIwpA+rVGiRltMHdUL1d4oLb9/9sJVNGgzCH8t/g6hIdlx92HqkYN8XEeg/+z0t5JKrXm3XIr8Hx8ScDWBs9cNmPGHH17MbUbnepRiV8eD9TuPwLdd4+TC+00O4jG8zsPsFSVnzWT9326v6Bw7YZOArgTkm8kLceDIaSya/qW8fEp6lMyAjBjYAeHVysvpn54BiUvgH7g2R5lGCb7/zQdnrgHd3zehSB6zRrWyGhKwTeD0NQMm/WbES3mAHu/zd4ZtYkzhqQS+7vRQbvrgGZkoIJ4aRI3aHRTg49SaYhOAK4+u9FBcV1AAkD+n4uRMaCcB3QjI5Ws3Ubt5f/lyGOniF8tj2QNy8M/Z8PvvVrBazfqhVePwtD0gtWtUlG++lB4Re0DW7PbDjXtGqyHjEZ12jmQAP24IwIUbRrQJT0ChEJP9BTEnCQgmwCVYgoGyOLclwCVYbhsat2uYs5dgnboCjF2mvtsv5wX6NVafjznUEdCNgAwcORORN6Mwd8LAJwjFxiWgQp1PMKBrMzS3cgrWrJ9XY9nqzfIpWBmCAtB5wDiHT8Gasz4AF29aF5ChLVOnr/moJ0ABUc+MObQhQAHRhjNrcT0BCojrY+ApLdBKQHx9gCwZbFNJTAGiYwEKiG1WIlLoQkBOnb2MRu0HY8HkQShbokg6btIdH9LGc8vzRc+WaPZBTfmldGqWtCdky85D8usSrxTCpBGfIVeOYPm1PZvQI+8aEZ9owP4zRhw654vSLyaj3Eup39gXDOHyDHsHNgXEXnLM52wCFBBnE2b57kKAAuIukXD/dmglINkzA5UfLXx5Jpg7D4DtxykgWo0cXQiIEpgpKSZE3opCruzBaUuxHs93PzoGSUnJaRcQWt6zR0AseTcd8kXEYT9UL5WEGqWTlTSTaZ5DgALC4eGuBCgg7hoZtks0AQqIaKLeWx4FxHtjq6RnFBAllJ6ThgLiIECV2e8+NODQWesb1w6c88W9hwaUKZyCrBmt7wGRjublQwJaE6CAaE2c9bmKAAXEVeQ9r15vE5Cjp85j9ORfMH/S52nB6DzgO3RsUR+vlXpZvgJi0/aDyJghUD59NVtwZkgrbqpWKuV5wRPQYgqIgxApIA4CVJnd8oecymxpybnHxl5yzOcIAQqII/SY190I3LtlRsx9661aMTX1mOmGXfyQetbkk0/GLEBwTmvvuFsv2R5nE/A2Adl14ATa9RqNYxFz09BV/aA7hvVvj+qVy2Du4nUYM20ROrdqgFLFCmPJqk04fPwstv46ydmo3bJ8CoiDYaGAOAhQZXbLH3IBfkBoduUnXV2ITN30TwFRCZzJhRCggAjByELchEDE8mQc+Uf579/Hm138DSPebuzrJj1hM1xJQI8Csm3PEfk0Vum5efseanzUU74IOyxfiCtD4ZK6KSAOYqeAOAhQZXbLH3LBGc0o85LyDfsRh1L/waOAqATO5EIIUECEYGQhbkLAIiABGQB/hXfJJSUC8bEABcRNgugGzdC7gEghqFCnM4YPaIda1Su6QUS0bQIFxEHeFBAHAarMTgFRCYzJ3YIABcQtwsBGCCJgEZCwogaEFFC2nOrGFTMuHjejxOtG1GjCGRBBofDoYrxNQPYd/heteox87hKsx2dArkbeRnjTvvL1EBXKFPXoWNrTeAqIPdQey0MBcRCgyuwUEJXAmNwtCFBA3CIMbIQgAhQQQSB1Xoy3CUhsXLw8ozFlZE+ULl4YazfuxoiJ8+XXlj0gv63fhhnf9kVCYiKmzP0V/+w+gg2LvkNQoMKpRC8aMxQQB4NJAXEQoMrs3ISuEhiTuwUBCohbhIGNEESAAiIIpM6L8TYBkcI5de6vslhIjyQdEdsPYuqoXqj2Rum0TeiWsOcLzYkxgzuj1KuFdTkSKCAOhp0C4iBAldkpICqBMblbEKCAuEUY2IjHCEhHlo9fGWiVyTtlk1C1xLOPLHemgKT8fQJJyw9YbVfg1w2AHJkYRy8hoJWAvJABKFHQNrT7scCxC45fRChdYJ2cnIIsL2R8olLpFCxpCda0Ub0QHRMnH8Or54cC4mD0KSAOAlSZnUuwVAJjcrcgQAFxizCwER4gIMkL9yBp8kbrArL8ExhCgxlHLyGglYCoxfVyXqBfY7W5bKe3CIjlFCzbObw7BQXEwfhSQBwEqDI7BUQlMCZ3CwIUELcIAxvxDAKTfw/ErfsGdK0fj1zBZpucnDkDYr7xAOar92G+GY3Er1fBkCsz/L+sL7fJWCIU8OcGdpsB8pAEzhaQy7eARRHqYeTPCTStrj6frRz/nruCG7fuomqlkraS6uJ9CoiDYaaAOAhQZXYKiEpgTK4pgZ2nfBEXn77Kuw8NOHTOF1kymlG2sPWlLSXCTMgZbN/dCpp2kpV5HQF3EhALXPPFO4hvNhuG/NkQuLij1zFnhwBnCwgZuzcBCoiD8VEiIEPmB9ldS9vwRBQMUX7fhd0VeUhGCojYQN2NMeDBw0fHaF6/a8TaPX5WK6lTIQmhWR/9gfxCJjOyZrT9banYFrt3aRN/DURUtLJjSZ/uSeO3ElEijJ/150X46m0jklLS8w30NyP3Y2PTvUeJ+7WOAuJ+MdFDiyggeojys/tIAXEw/hQQBwGqzE4BUQnMRvJNh3wRcdi6cNiqqXqpJNQo/eyNqrbye+P7FgHJkz0FfgpXity+Z0RMggEUENsj4vvfAnDngTFdwgK5TGhfK8F2AUxhlQAFhAPDFQQoIK6g7j51UkAcjIUaAZH+YFP6HDjri/sxBnAG5EliFBClI0hZOouABPiZofQY8vhEICHJAApIesYTfwtE1AMDKr6chAzWDxhKl+nYRR/cum9E46qJKFGQMyDPG7nL//HD/YdGSEvaHsQaEJzJjCwZUmc/6lZU/vtV2adDP6koIPqJtTv1lALiTtHQvi0UEAeZU0AcBKgyOwVEJTCFMyBhISkoFKJs/4EUg4s3fCggVthSQMSOz2eVtn6fH7Yf90V4uSRUKc5ZOEepU0AcJcj89hBwtoDExZoReUnZv2uPtz8gCMgT5mNPl5hHBQEKiApY1pJSQBwEqDI7BUQlMAqIWGA2SqOAaIObAiKWMwVELE+WpoyAswXk3IlkzPomRlljHktV6BUfdPqc982oBqcyAwVEJbCnk1NAHASoMrtFQDIFAS/lUb5c5eDZ1G8zhraMU1mjdye3LMHiDIiYOFNAxHC0VQoFxBYhde9TQNTxYmoxBLQSEB9fMzJnSb937OleJCWZEfMAcHcBWR+xGxXLFkPWLOkvMkxKTkFKSgoCA/zFBOm/Um5H3cf+I6cRXq28sHIpIA6ipIA4CFBldt6ErhKYjeQUELE8KSBieT6rNAqIWM4UELE8WZoyAloJSHB2A16ravsP8ru3Tdi/LcntBaR49TZYMHkQypYokg705Dkr8fe2fVg5Z7iyIChMtfvASbTt9Q2ORcxVmMN2MgqIbUbPTUEBcRCgyuyRUQas3Wv9F0lklBHxSUBIVjOC/K0fD9s2nCflPI6cAqJyANpITgERy5MCog1PCog2nFnLkwQoIPaNiOcJyM3b9xD9MAaFC+a1r/Bn5KKACMUppjAKiBiOIkr5cUMALtwwok14guIN1SLq9eQyKCBio0cBEcuTAqINTwqINpxZi/cLyP4j/2L8zGU4eeYS8oXmQMuPwtGo7ls4e/EaRkyYj10HTqBwWB50a9cobTnTqg3bsXnnIWTOlAGr/9yB0FzZ8FXfNtix9xgW/bYRObJlQbe2jVCzajkZoCQgUrm79h+HdLt6/fDKGNK7DYIC/fHH3zux7/C/+LJXK5w5fxUDR85EvXffwC8r/5bztm9WF00a1JD/32w2Y8nvmzBv6XpEP4yV29msYU3kzplNfu+nZRswb8k6+fb2l1/MJ9fFGRA3+hRTQNwnGBQQ9bGggKhn9rwcFBCxPCkg2vCkgGjDmbV4t4BcunoDdVoMkP+Qb1S3Ki5cjsTBY2fweY+PUadFfxR/uSBaN6mN3QdOYMrcX7Fs1lAUKxKGuYvXYcy0RbIcVKlYEj+v+BN/b92PWtUr4sP33sK+w6ewdFUEtqz8HgaDQRaQEq8UQrtmdSHtzZgwa5ksHJKI/LR0PSK2H8Sc8QNw5MQ5NP30a7xdpawsHZev3cKIifOxfdUUZMmcUZaVr8bOxdC+bVGoQG5M++k3ZMmcCcP6t8Oav3eh37Bp6NrmA7z1Rmn8uXkvZi/8gwLiTh9iCoj7RIMCoj4WFBD1zFwlIP+sTkbkhfRLCzO+YEDtVgpvPRTbXZeVxj0gYtFTQMTyZGnKCHjbEixp/8Xi3zemiYKFwj97jqJTv7H4a8k4eXZDehq0/hxVK5VCvy5NZQHZtucIZo/tJ79nSW+Zbbj/IAaVG3TFmgWjEZYvRBaQx/eAjPx+AWJi4zFiYAerAnJ004+yuEhP1Q+64+v+7VCjcll83G2EXN7HH74rv3fi9EWMmrQQO1ZPQae+Y5ErZ1Z883kn+T0uwVI2pjVNRQHRFPdzK6OAqI8FBUQ9M1cJyO8zk3DxZHoByZwVaDPY9gZLsT11bWkUELH8KSBieXpraWWLv4ibNyLTda9WnXqYM3+J6m57m4AMGDFDZjB60CdPsFixZgvGz1yKrb9OSvv5kLE/ysuexn3VNZ2ASMu4WnYfmTbbkJCYhHLhHbHih2F4pXD+dAIiLdP6cdFarP9ljE0Bqb5frQgAACAASURBVPvxAHk5V92alWQZyRAUiJzZg59o74Svu6Fhuy/wWYeP8FG9ahQQ1SNbowwUEI1AK6iGAqIA0lNJKCDqmblKQO5cB+JjzDhzOAWHt5nwYgkjyrzlAx9fIHfB1G+39PJQQMRGmgIilqe3lkYBeX5kx05fjC07DuH3eSOfSLhp+wF0+3witv8+BVleyCi/J80+FCtSAIM+a2lFQE6jZfcRigVk6Lh58n6P+ZM+VyUgH3UcgvdrVZH3kzz9dP18Aoq9FIZu7RpSQNz1A00BcZ/IUEDUx4ICop6ZqwTEUq8kH5tXJKNkFSOqf6ivpVcWBhQQseOWAiKWp7eX1r93N/z80xyM/m4SPm7d3u7uetsMyM59x9G+z7f/7ceogus372D7nqPyJvDwpv3Q7IO30aFFPew9eBLdv/geU0f1QrU3StslINLSqLo1X5f3k/QfPh0dW9RDq8a1VAnIzAWrMH/ZBrkdr75cEFcjb2PZ6gj0/qQJFq78W96APurzTsiZPQsm/7hS3iDPTeh2D3fxGSkg4pnaWyIFRD05Coh6ZhQQsczsKY0CYg+1Z+ehgIjl6e2lUUCeHeG5S9ZhzNRFaQk6t2qA7u0aYfOOQ+j79TTExsXL71l+Lv2/lEcSlZlj+srvSRf+PT4DkpiYhLJPLcGSlk5ZypIEZ1i/dvD395OFYtM/B1I3oZ88j6adh+LxPSDSEiypPXXergSp3PGzlsnSYnkqlCmKuRMGypvbO/YdI598JT1VKpSQ96ZQQNzo000BcX0whswPstqI6qWTUaNUkusb6MYtoICIDY4Wp2BxBgSggIgdtxQQsTy9vTRPE5BMWQx4paSfzbBEPzDj38OOX0SYkmLCnbsPEPxCRlkKLI/088hbUcgW/IJ8ZK4jj3RM7o3bdxHo74/gLJkcKQrJKSm4E/UAL2TO+ES7pDoib0Yha3Bm4TerSw3mRYQOhQ2ggDgIUEB2Coj9ECkg9rOzlpMCIpbns0qjgIjlTAERy9PbS/M0AVEbj0Kv+KDT5479Ua+2Tj2mp4A4GHUKiIMAmd2lBCggYvFTQMTypICI4/kg1oCoaKPVAldu98O9hwY0rJyE4EzpT1oL8DMjNJspLW/E8mQc+ceEsKIGhBRQdgDCjStmXDxuRonXjajRxPbeJfPFO4hvNhuG/NkQuLijOBAsyWECniIg1y6mYPXPcar7Gxrmg/otrK+sUF0YMzyTgO4ERDor+cHDWITkyAqj8dEvTpPJjJt37so3Tvr6+KQDJh2XJk1TZc2S+Yn31AhIoZBHv8Btjcnrdw2ITzSgbXgiCoak2ErO90nALgIUELuwPTMTBUQsTwqIOJ67TvpizR7by1Cs1Zg/pwkdaidQQMSFw6NL8hQB8WjIOmi8bgRE2gA0espCXLxyQw7ryjnD5avlpefpzUFD+rRBk/rV5fekTT4Dhs/Axn8OyK9LvVoYk4b3kEVFetQIiD3jiQJiDzXmUUqAAqKUlLJ0FBBlnBxNxSVY6glaBMTf14ygAGX5k1OAmHgDKCDKeOklFQVEL5F2bj91ISDStfTSmcbSMWXSmcfSLEZAgL+82SYuPhFvNewhn3XcotE78hX2nw2eJF/oki80p3z1/NJVEZg/aZCc/tOB41GoQKh8Vb1aAQlTMZMRGWVEQhJnQJw7/Fk6BUTsGKCAiOX5rNIoIOo5WwQkb3YTiuRVNqt+P8aAA2d9KSDqcXt1DgqIV4dXs855vYBIu/gbtR+MV14qkHal/ON0pdmPLv83Hgc2zEo7rUA6pkySkRaN3oV0UUut6hVkeZGe9RG70furqWnHmqmZAamu4kQm6Ze+9MufMyCafRZ0WREFRGzYKSBieVJAxPGkgIhjqfeSKCB6HwFi+u/1AhJ1L1q+bv7tKmWRlJyMmNgEvPHaq2jXrK58rNiSVRGYu3gt1iwYnUa0+6CJKJg/FH06N0GFOp0xfEB7WUKk5/i/F9C401fYvmoKsmTOqGoJFgVEzKBlKeIIUEDEsZRKooCI5UkBEceTAiKOpd5L8hQBMT2IR+LJSNXhMmYOhH+x3KrzMYM6Al4vICdOX5RnMRrXq47KFUrgQXQMRk/5Be/VfB1f9W0jL7Fat2k3ls0amkZOuiwmU4YgDOnTGiVqtE27rVJKcPbCVTRoMwh/Lf4OoSHZER2XbJN47xmpJ36Ev6Z8E/qeUwbcfWhA1wYpKBya/lQSm5UyAQkoILBurxEb9hnxYqgZL+VRNs7OXDPg3HWDPJ5rl1c+phU0x+OTjFzki9v3gSrFTcgYqKw7h84acOOeAS3fSUHZwrZjsDciGRsWJeC1ar6o1UzhYn5lTfGYVL/vNCLikBH1K5lQowzHoJLAbT1qxMp/jMif04xiBWyPM6nMuw+BPaeMKBhiRo8PHi3bWv9LAvZtTsaLxX2Qp6D1k7WebtP1SyacPZKCsm/6os7HtsdtyvnbuNNwOnzCsiP7b58q6SLTaESgR7dPMXfObEycNBVt29t/QlnmINunoTnSpbhdF3Ct1VzVRQRWCEPeBW1V52MGdQR0IyBbf52EbMGpJ1itWLMFoyYtxO4107B09WabMyAjBnZAeLXyct6nZ0CiY21fdNd7ZurJI+GvKVt3K6WVfunLAlJfEhD+A6tuWDO1UgLr9kkC4oMXQ00qBcQoj+faKqRaaZs8Od3IxX7/CUiKCgExpgpITUlAbH/WZQFZnJgqIE0du8zKU1n/vtMHEYclAUlBjdK2mXlqP0W2WxaQ7T7/CYgyZqkC4pMqIO8/+rJt/aLExwRE2TG8qQJiShWQFrbHrSwgjWakCsivnUWiYFkOEpAF5McfUgWkXQe7S8ucwb5T2ZRWaBEQg78PjDkU3OuRmIyU2zEQJSDS6arSsn3py29pxQyfJwl4vYDcj45B5fpd8cvUwfIJVtKz5PdNGDpuHo5s/BFbdx2W94Ac/HM2/PxSbbxWs35o1Tg8bQ9I7RoV0aH5e/J73APCj5A3EeASLLHR5BIssTyfVRo3oavnzCVY6pkxh3UCnrIEyyIgPnmy4IVGZWyGM/nqfUSvPChMQJKSklHm3Q7yCptiRcJs1q+3BF4vIFJAOw/4DpKJTvi6G25HPUC/r6fJy6ek17FxCahQ5xMM6NoMza2cgjXr59VYtnqzfApWhqAAdB4wzu5TsLgHRG8fL/fvLwVEbIwoIGJ5UkDE8aSAiGOp95IoIMpGAAXk+Zx0ISBXrt9Czy8nQ9oPIj2VyhbDt4M7p93lId3xIW08tzxf9GyJZh/UlF9KFxdKe0K27Dwkvy7xSiFMGvEZcuUIll/zFCxlH0Smck8CFBCxcaGAiOVJARHHkwIijqXeS6KAPHsE7Nh7DKMm/YyzF6/Jq24OHz+bNgMircj5dsov2LB5LzJnCsJH9aqj08f1YIABrT8bhd6fNEG5kkVw/tJ1DBwxEzPH9pWXbkkrb7bsPAxpO8CqDduxeech+ee/b9iOoi8VkK+RkP6u9bRHFwJiCcrN2/fg6+uTthfk8WClpJgQeSsKubIHpy3Fevx9aeBINmu5gNDyHgXE04Y82/s4AQqI2PFAARHLkwIijicFRBxLvZdEAbE+Ai5fu4nazfvL981JchF5Mwr9hk1LE5D+w6bj5JlLsmhE3Xsg70Xu2fEj+dqHdr1Go0LZovi01fv44Zc1GDdjiXx1RP3wyvhi9A94IVMG9O/aDHMXr8OYaYvQtmkdvFmxJNZu3IVjpy48cZCSp4xPXQmIM4JCAXEGVZapFQEKiFjSFBCxPCkg4nhSQMSx1HtJFBDrI2DG/FVYsHwDtqz8HgaDQf7S2rIHJCxfiHytw5jBn6JuzUpyAd9MXohd+49j5ZzhkJb77zpwArPH9sP/PhmKHNmzwMfHiO+H9ZD3Jf9f9xaoXrmMLCDb9hyR00mPNFtSr9X/YfvvU5DlBc/a6E4BcfA3CQXEQYDM7lICFBCx+CkgYnlSQMTxpICIY6n3kigg1keANFORmJgkL/GXnscFRLp3ThIF6c45SUakZ/WfO+QDkfasnY5Dx8+ieZdhWLfwWzRq/yV+/XE4wpv2lV9LsyqWu+eeFhBpZU+Nj3ri76XjkDtnNo8amhQQB8NFAXEQILO7lAAFRCx+i4DYU2rjqokoUdD2Ud2Ht5mweUUySlYxovqHzj1H355+aJGHp2Cpp0wBUc+MOawToIBY5zJv6Xr8uXkvFkwelE5A8oTkQOUGXTFlZE95JkN6Js9ZiTUbd8pSkpScgjLvtJeXbwUGBuDLXq3wcbcRyJcnJ86cv5q2xIoCwk9lGgEKCAeDJxOggIiNHgVELE/OgIjj6a4Ckjj+L5hO30zf0YRkmE9cB/x9YXg11CoI/8avwVjjFXGQWJIiAhQQ65ik/R0fdvhSXmZVsWxReYZD2q9hOYZXEopMGQMxpHcb3L0fjV5DpiC8WgX06dxELvDTgePlA4+k5VVvlC+O+cs2yMu0pGsgenVqLKehgCgaovpIRAHRR5y9tZcUELGR5RIssTwpIOJ4uquAxHdZCPPBy3Z11P+zmvD5X+olwXy0I0ABsc5auu6h//Dp8sZw6ZFmOiK2H8Ty2V/Lp1VJ+zU+GzxJPiHL8r600Txzpgzya0k4vv9hBbb/Plk+DOlq5G15Gdb00X1QtVLJVAFZsg7b9xzFzDF95de37txD9Q97YuPS8QjJmVW7QSCgJi7BchAiBcRBgMzuUgIUELH4KSBieVJAxPF0dwHxqVQIyKZsE63p+DWYL0aBAiJufKgpydMExJg9EzK9lXoR9fOe5NsxiN16xuGLCG9H3ZcF4lm3n0v7NgIC/HR/OzoFxNaItPE+BcRBgMzuUgIUELH4KSBieVJAxPF0VwFJ6LoQpgOX4VOnOAyhWRR12LTzHEzHI+HXoyZ8m3IGRBE0gYk8TUDUdj2wQhjyLmirNhvTqyRAAVEJ7OnkFBAHATK7SwlQQMTip4CI5UkBEceTAiKOpd5L8hQBSTwRiVsj1qoOV0Cx3MgxqI7qfMygjgAFRB2vdKkpIA4CZHaXEqCAiMVPARHLkwIijicFRBxLvZfkKQKi9zi5e/8pIA5GiALiIEBmdykBCohY/BQQsTwpIOJ4UkDEsdR7SRQQvY8AMf2ngDjIUY2ABGc0K64tOt6AlBSgbXgiCobYvhtAccFMSAKPEaCAiB0OFBCxPCkg4nhSQMSx1ENJhw7uR9133rSrq0ajEZdvPrSZN0/2IJtpmMB7CVBAHIytGgGxpyoKiD3UmEcpAQqIUlLK0lFAlHFyNBUvIlRPkAKinpmec1BA9Bx9bfpOAXGQsxIBuXDDx2ot+88YceicL0q/mIxyL5mspsmd1YRAf+UzJw52h9l1RoACIjbgFBCxPDkDIo4nBUQcSz2UZBGQkJDcaNGqnaIum0wmTPjuG7jLDMi9e/dw6NAhRW1/PFGWLFlQpkzqbeV8nEeAAuIgWyUC8qwqLH/8VS+VhBqlkx1sCbOTgHoCFBD1zJ6XgwIilicFRBxPCog4lnooyRsEJCIiAjVq1FAdrmrVqkHKy8e5BCggDvKlgDgIkNldSoACIhY/BUQsTwqIOJ4UEHEs9VCSNwlIQEAAcufObTNs8fHxuHHjBtxVQKSb1tdH7EblCiW84hJDCojNIfn8BBQQBwEyu0sJWAREWuYX6KesKfFJQHyiAZy5S8+LAqJsDDmaintA1BOkgKhnpucc3iQgYWFhaNOmjc1wXrhwAfPmzXNbAUlKSkaZdztg2ayhKFYkzGZ/3D0BBcTBCFFAHATI7C4lYBEQexpBAaGA2DNuROShgKinSAFRz0zPOSgg7rcEiwKi50+klb5TQDggPJmARUBCgk0Iza7ssIPrdwy4cc/IGRArgecMiDafBgqIes4UEPXM9JyDAqJeQM6cv4pB38zGwO7NMX/ZBty8fQ8LJg/CgBEzsH3PUUTdi0bhsDzo2rYhalWvIA+vbyYvhK+vD85euIa9h06hRuUy6N6+EfLnySW/v2PvMYya9DPOXryGUq8WxuHjZ9NmQO5Hx+DbKb9gw+a9yJwpCB/Vq45OH9eDr48PVm3Yjs07DyFzpgxY/ecOhObKhq/6tpHLW/TbRuTIlgXd2jZCzarlXDbMOQPiIHoKiIMAmd2lBLgHRCx+CohYns8qjQKinjMFRD0zPeeggKgXkCMnzqHpp18jJGdWfFj3LQQGBqB9s7r4ecWfeKlQPmQPfgEROw5i/Myl2P77FGR5ISM+HTheFo+eHT+U04ybvgSVyhVD70+a4PK1m6jdvD/er1VFlovIm1HoN2xamoD0HzYdJ89cktNG3XuAUZMWomfHj9Ci0TuYu3gdxkxbJNdfpWJJuQ1/b92PWtUr4sP33sK+w6ewdFUEtqz8HgaDwSVDnQLiIHYKiIMAmd2lBCggYvFTQMTypICI40kBEcdSDyVRQOwXkN1rpiNjhsC0YZKSYsKps5dkWZBmRSbNWYHFM4agxCuFZAEpV7IIOraoJ6df/scWLFi+ASvnDMeM+avk/7dIwuNLsMLyhaBCnc4YM/hT1K1ZKW02Zdf+43JeSUC27TmC2WP7ye/9s+coOvUbi2MRc+XX9x/EoHKDrlizYDSkslzxUEAcpE4BcRAgs7uUAAVELH4KiFieFBBxPCkg4ljqoSQKiP0CcnTTj2mzCjGx8eg8YJwsH2+/WRahubJj1s+r8cvUwfKSqqcFRDrlatyMpVj/yxh8MfoHJCYm4dvBneUh97iABAb4o16r/3tCIKSlVkPHzcOetdPTCcj+I/+iZfeRaQKSkJiEcuEdseKHYXilcH6XDGkKiIPYKSAOAmR2lxKggIjFTwERy5MCIo4nBUQcSz2URAERIyDSsqceg7/H9lVT0o7OLV69jSIBmbd0Pf7cvFfeR/K0gOQJySHPYEwZ2RPVK6demjh5zkqs2bhTlpKnZ0D2HzmNlt1HUEC86cNLAfGmaOqvLxQQsTGngIjlSQERx5MCIo6lHkqigIgRkJ37jqN9n2/lmYbcObPhj793YsTE+YoERJo1+bDDl/Iyq4pli8qbyaV9HZZjeD/uNgKZMgZiSO82uHs/Gr2GTEF4tQro07kJBUQPH1IKiB6i7L19pICIje3EXwMRFW1Anuwp8PNVVvbte0bEJBjQ+K1ElAhLsZnp8DYTNq9IRskqRlT/UGElNkv1rATchK4+XhQQ9cz0nIMCYoeAnDyPpp2H4vElWNLlgb2/moI/t+yVh9PbVcpi4z8HsGjalyhZ7EV5CdZrpV5Gh+bvye+vj9iDcTOWyEuwpLz9h0/H2o275PekmY6I7QexfPbXKPpSAZy/dB2fDZ4kn5Blef+bzzvJJ1/NXbJOPnlr5pi+8ntPz4BIS7vKcgmWZ3/EKSCeHT+9t54CInYEWATEnlIpIMqpUUCUs7KkpICoZ6bnHN4kINIt6LVq1bIZzsjISKxfv94pFxHejroPHx8jsmbJbLMdTyeQ8vr5+T7z9nNpY3tAgJ/H3Y7OPSCqh8KTGSggDgJkdpcSoICIxb/zlC/i4tOXefehAYfO+SJLRjPKFk62WmmJMBNyBptsNogzIAAFxOYwSZeAAqKemZ5zeJOAqI1jtWrVEBGhfgZEbT16T08BcXAEUEAcBMjsLiVAAdEG//kbRszdEICCISa0DU9wqFIKCAXEngFEAbGHmn7zeIOAHDx4ED179lQdxDJlymDChAmq8zGDOgIUEHW80qV2BwGJjzPj5B4zEuPM8A8yoGgFAwKDXHOxjIM4mV1jAhQQbYBTQMRy5gyIep4UEPXM9JzDGwREz/HzhL5TQByMkqsFRJKPn4YnIyHOnNaTHHmNaNZHn5tTHQyn7rJTQLQJOQVELGcKiHqeFBD1zPScgwKi5+hr03cKyH+cpdMGbt65ixzZssDXxycd/eiHsUhOSUm3gcjVAnJgcwq2/Zb+5JyGXXyR7yWjNqPIS2qJjwEObbW+Pj+sqA9yF/S+WSUKiDaDlwIiljMFRD1PCoh6ZnrOQQHRc/S16bsuBGT0lF/w09L1TxAtW6JI2uUum3ccQt+vpyH2v92jQ/q0QZP61eX00s8GDJ8hH5smPdLNlZOG95BFRXpcLSC71qdg9/r0AvLm+z4oWy29SGkzrDyzlvu3zfhpZJLVxnsrTwqINmOVAiKWMwVEPU8KiHpmes5BAdFz9LXpuy4E5JvJC3H52k3079Isjap0ZJl0KUxcfCLeatgD3do1RItG78hnLEvnKktnMOcLzYnZC//A0lURmD9pEIIC/eUzmwsVCMWw/u3cQkA4AyLug/L4DMihbSYkxAKl3jQiMAPAGZBHnKU/pi/e8EH1UkmoUdr6jJG4qHhHSe4sIOZ/b8DwcohHgaaAqA8XBUQ9Mz3noIDoOfra9F03AnLvwUNIF7Q8/UizH13+bzwObJgFf38/+e26Hw+QZaRFo3fxUcchqFW9Ajq2qCe/tz5iN3p/NTXtohlXz4BIe0BWTEnGnWuP9oBkz2NA876pfeFjH4GfRiXh/i0zWg70Q3Au71t6ZaHCGRD7xofaXO4oIEkT/kLykn1pXfHrURO+Tcur7ZpL0lNA1GOngKhnpuccFBA9R1+bvutGQDZs3oPXy70q7+F4+81y8s2T0rNkVQTmLl6LNQtGpxHvPmgiCuYPla+zr1CnM4YPaC9LiPQc//cCGnf6CttXTZEvfXG1gFgafeWMCVfPmpG3sIF7PwR8diggz4bIGRD1A8zdBCTljyNIHLEmXUcC57bxiNkQCoj6MUgBUc9MzzkoIHqOvjZ914WArNqwHReuRCLA3w9HT53H31v3Y9xXXVCrekV5idW6TbuxbNbQNOLSfpBMGYIwpE9rlKjRFlNH9UK1N0rL75+9cBUN2gzCX4u/Q2hIdsQlpN9/oTR0a/YYsG6vEbXLm1C3wqMZDKX5mc55BCZ/EYuomyZ0HZYB2UO8dzO/ZQwWzmNGkTzKxuDpawacvWbguJWGn8LJsdNXDZj0mxEv5QF6fGD/7wypyj0bk7D2lwSUr+GHus0D7PoQRE/djOhpW9LlDR7WABk+SP1d587Pr9uN2HjQgPffMKFmWWXjVlh/NK5OVLu3HDFg2TYjCuQy49UCyjpx9yGw66QRhXIDvRo+GrdrFiZgb0QSChf3Qd5Cyn4/XrtowpkjKShX1Q/1Wj4at7fb/YTEvRcRVL8UfPKm7q209ST8cxZJR64hS79wZGxZyVZyvm8Hgf379uLNKq8jd+5QtGvfQVEJJpMJ34waAaPRiIexiTbzBAVwn6pNSF6cQBcC8nT8Bo6ciXv3ozF9dB9FMyAjBnZAeLXUpQlPz4BERdt/qdif+33w1wFfvFM2Ge+Wc+yPEi8eoy7p2uyhCbh7y4z2XwYgmxcvwbKMwUK5TSgcavsWbikYZ68bcT7SyHErwVD2d5zMbOZaP7yY24xP6tr+h/l5g/7AlhT8tTQJZar64N0m9i21jJu5FfGztqWrJtO0FvArX8Alnzk1lf6xxxdbjvigbvlkVCul8e9OhdKppj9apN1+zAe/7fRFvpwmFM2n7LN+76EBe0/7ICyXGV3qPxq3fy1JgjQOC71qRGiYMiCRl8w4d8yE0lV8EN7s0biN7vQzkvdfgv97JWDMo0xAkrafQ8qx68jQ+x0ENE9dncBHLIED+/fhnepVEJI7N1q3aa+ocElAxn47ShaQW/dibebJltm+L1BsFswEHkFAlwIyYdYy7Dv8L+ZP+hyWPSAH/5wNP7/UuzNqNeuHVo3D0/aA1K5RER2avye/5257QDxilHlgI7kE69lB4xIs9QPa3ZZgSRvP49vMfaIjhowBCFjRGYbMgeo7qHEOLsFSD5xLsNQz03MOLsHSc/S16bvTBeTWnXvImT3Yam8OHT+Ll1/ML58u5cxn/MylaBBeGQXy5caps5fQtudoWSg+aVkfsXEJqFDnEwzo2gzNrZyCNevn1Vi2erN8ClaGoAB0HjDOrU7BepybtA+Ed3+IGUkUEAqImJGUWoq7CYjUppT9l5D8Q+osiCFTAPzav+kR+z/kL4L2+WH7cV+El0tCleI8iU3JWKWAKKHENBYCFBCOBWcTcLqA9P5qChrWeQtVK5V8oi9bdx1B5wHfpW3mdmZH//fJUHnvh+X5oPabGNyrFQIDUsVHuuND2nhueb7o2RLNPqgpv4yJjZfvCNmy85D8usQrhTBpxGfIlSNVqtxhE/qWX5NxaMujKfUyb/mg6gdcW+nImKKAUEAcGT9P53VHARHZP63LcicBMV+/j5S1R60iMJYpAGO5/FrjsVofBcQtwuAxjaCAeEyoPLahTheQ739YjhnzV2HmmL6oUqGEDGrtxl3yH/XS6ymjesHP1/l/LEs3md+9H42c2bNanXFJSTEh8lYUcmUPTluK9XhU70fHICkpOe0CQst7rhaQE7tT8Nei9Gugm/b2Rc58yjYHeuzodWLD9SYg9qDkPSDKqdkjIFfPWN9gcuZwCg5vM+HFEkZIXzZYe0LCDPC1b3uI8k65MKU7CYhp/2UkdFtolYZvu8rw61DVhaQeVU0BcYsweEwjKCAeEyqPbajTBcRkMmPUpAVYuPJvWUKuXr+FoePmoc7blTByYIe0uzc8laCrBYQ3oTtn5FBAbHOlgNhmZElhj4BM6m3/ZvUWA/yRzbPuFlQOU9ASrN0brG/EzvuiAXlfUraxWmq0NAOS/Mdhuf0pa47CHPkAPnWKwxCaBT7lCnr1DEhABsBf4QrqpEQgPhYo/oYRbzdO3W8pPQldF8J04HIaMyUDwbTzHEzHI+FJd9co6Zc7paGAuFM0vLMtThcQ+Re02Yyx0xZj7pJ1MsXmDWtiYLcW8PHx/G/o3VVA6rb1ReGSns/XVR87vQjI8/gOmR8kvz20ZZyrwuA19ToiIJmtb6GzyibmgRkmkwEUENtD51mCVzHciEq1H/2BbLukRyniuyyE+eBlBExu7jbiYWmdM2ZA1LCx7FHYzgAAIABJREFUpC3xuhE1mlBA7GGnZR4KiJa09VmXUwREmvUwmdN/uzRx1nLMWbQGq38ahfx5c8nEfX2cv/zKmaF1tYA8iDJj3vCkJ7roHwi0HuyHwCDl3+I5k5Enlk0BASgg4kauWgExmYApfRPla0YqhCv/IuHIPybExQDN+/she27v/fyLWIK1a13q5vUTe0yIvgsUrWDAC1mli1x9VM2APD5K9CYgIQUMio8pl441j7xo5gyIuF8rTi2JAuJUvCxcOvzELE1PCH6kDd3Sxm4lj+VGcSVp3TGNqwVEYiKdfnVwcwoS4wFJPirV8uH+DwWD5UBECrb9bt8dAtKN8426evEiezguIDH3gXu3rP968fY9Ck8PPwqIgg+kiiQiBMRS3fLJSbh2zoxGXfzsFg9LWXoTkLCiBkgSouS5ccWMi8fN4AyIElquT0MBcX0MvL0FThGQf/YcxbUbtxWxez+8ikfvA3EHAVEEmonSEaCAPH9QODoDcmibCVtWWD8i9eOB/siaOgmqi4cCIjbMFBD1PJ2xBIsCoj4OnpKDAuIpkfLcdjpFQDwXh/qWU0DUM3OXHBYBkb7Bk/4hVfJIS95O7jWDMyC2aZ09bMLBLSlISQZuXDLDxxdp35aGt/BD5qy2y/CWFBQQsZGkgKjnSQFRz0zPOSggeo6+Nn3XTECkfSFx8QnpepUxg/vfuvu8UFBAtBmozqiFAuLcGRBL6fdvm/HTyCS8kM2A1l9497K1ZxGlgKj/BD+MM2DJFutHLN19aMCDWAOCM5mRJYP1ZX4t30mAn4IthlyC9ezY3I8x4MBZX+TPaUKH2o/+/Y5YngxpvxFnQNSPa0/JQQHxlEh5bjudLiA3b9/DjPm/Y8PmPYi6F52OFPeA+IHHmbrmA0QBoYBoNfIoIOpJS5IxYaX9X1ANahYHfwWHWVFAKCDqR6f356CAeH+MXd1DpwvIyO8X4OcVf6Fr24bImzsHfJ+6dDD8rfJWL/5zNRil9dszA7Jmtx9u3DPiXowB9x6mfosXnDH1W7y24elniZS2henUEaCAUEDUjRj7U1NA1LOzCIi/rxmvhlm/s8NaqYfO+UA6WoUC8iQdLsFSPwb1nIMCoufoa9N3pwtI1Q+6o3H96ujR/kNteqRxLfYIyJz1Abh40/rRmrxzQbsAUkAoIFqNNgqIetJR0QZM/DUQgf7A60WfPGr8eaVtOeIHkyQgTePgr2DFH2dAOAOifnR6fw4KiPfH2NU9dLqAdB7wHfLnyYVBn7V0dV+dUr89AhJ514j4ROubnguG2HcsrFM65+WFUkAoIFoNcQqIetIUEPXMnpeDMyBieXp7aRQQb4+w6/vndAGRjuTt+eVkrP15NHJky+L6HgtugT0CIrgJLM5OAhQQCoidQ0d1NgqIamSggKhnRgERy0zPpVFA9Bx9bfrudAHp+/U0rN2465m90fMmdG1CzFqeRYACQgHR6tNBAVFPmgKinpknCojl8kafSoWAbBkVddp0/BrMF6Pg/1lN+PyvvKI8TKSOAAVEHS+mVk/A6QLy99b9uHzt5jNb1qxhTQQoWairvm+a5OAMiCaYnVIJBYQC4pSBZaVQCoh60hQQ9cw8UUASui6E6cBluzrr16MmfJtSQOyCZyMTBcQZVFnm4wScLiDejpsC4rkRpoBQQLQavRQQ9aQpIOqZeaKAWGZAkC0D4Kfg3GSpkw/igbhEzoCIHSJPlEYBcSJcFi0T0ERAbkfdx4nTlxAbF58O+9tvloPfU0fzelJsKCCeFK0n20oBoYA4e/RKR8nejzEi8q4Ba/f4ISTYhLoVk+Vqn3fghMkETOmbCOmoigrh1k/Ms9Z26XK4uBigeX8/ZM9t/aALZ/dZVPkUEFEkU8vhJnSxPL29NAqIt0fY9f1zuoAcPn4WzboMe2ZPuQfE9YNAry2ggFBAnD321+/1w/YT1r/V/aJ53DNv6qaAQOgm9FtXzdj6q/UTBm9dMyExDsiRx4CAIOvS1qirsm/mLd/mB0xuDmO5/M4eXqrKp4CowqX7xBQQ3Q8BpwNwuoD0GPw9rkXeweBerdC8yzCsnDMcITmzYvC3P8BsMmPSiM+c3klnVsAZEGfSdW7ZFJD0fC/c8MGPG/ytgm8bnvjcb+2fFa37t834aWQSXshmQOsvFFzM4Nywa1r6nn99ceS8j9U629V69qWjFBCxAnL1jBkrpiq/S+TpgHUfZ/0z8XQ6CsizP143rphx8bgZJV43okaTR0Jn2QPiU6c4DKHKTso07TwH0/FIcA+I836dUUCcx5YlpxJwuoDU/XgAPv4wHE0aVEfpmu2xbNZQFCsShgNHT+PjbiOwadkE5MoR7LHxoIB4bOhAAaGAuOvopYA4R0CCMplRsKh1IbQ2Fk7sTb2BnQJiQofaj4Q5YnkypOV+YUUNCCmgbKkfBcRdf9tYbxcFxLPi5YmtdbqA1GrWD62b1EbzhjUh/X+XNh/g/VpVcPHKDUhyMn/S5yhX8mVPZCe3mQLisaGjgGgUOj3PgNiLmALiHAHJHAwUq6h8T83uDRSQA2d9kT8nBcTez7Kn5qOAeGrkPKfdTheQdr1GI0/uHBg+oD2GjpuH7XuOYkDXZvhr6z78tv4f7PpjGjJlDPIcYk+1lALisaGjgAgO3al9Zty7lX6dfXwscHibCf5BQJmq1v/4K1DUB6EFlX2TKrjZblkcBYQCInpgcg+IaKLeXR4FxLvj6w69c7qArPl7Fy5cvi7PfNy8fQ8fdhiMqHvRct/7dv4f2jat4w4c7G4DBcRudC7PyCVYYkPw2/QkXPrXbFehVer7olwN5d9M21WJB2WigFBARA9XCohoot5dHgXEu+PrDr1zuoA83cnklBT8e/Yy8ufJBX9/P/j5+sJo9NxvPikg7jCM7WsDBcQ+bs/KZRGQ7KFAgMJJzft3gJj7AAXkSaoUEAqI2E8nj+EVzdPby6OAeHuEXd8/zQXE0uU7dx+g26CJmD66N7Jkzuh6Ena2gAJiJzg3yEYBERuE32Yk49IpE14uZ0BwDmVfKlw6ZUbkRTOq1PdBuRrKNweLbbn7lUYBoYCIHpWcARFN1LvLo4B4d3zdoXdOFZCTZy7h1NnLKPpSAbz8Yj4YDKl/lJy7dB2fDhiHK9dvYfea6ciYIdAdWNjVBgqIXdjcIhMFRGwYKCDieFJAKCDiRlNqSRQQ0US9uzwKiHfH1x165zQB+XnFXxj5/YK0PlYoUxSzv+uH/YdPo+vnExAY4Iep3/RGyaKF3IGD3W2ggNiNzuUZKSBiQ0ABEceTAkIBETeaKCCiWeqhPAqIHqLs2j46RUDi4hNRvnYnvF2lLLq1a4Sbt+/i81Gz5Ps//tlzVJ4NkeQjNFc21/ZeQO0UEAEQXVQEBUQseAqIOJ4UEAqIuNFEARHNUg/lUUD0EGXX9tEpAnL6/BV80PYL/D5vJAqH5ZF7uGRVBIZ+N1eWktFffIIMQZ677OrxkFFAXDuAHamdAuIIvfR5KSDieFJAKCDiRhMFRDRLPZRHAdFDlF3bR6cIiOWW8x2rp+KFTBnkHu4+cBJte32DvetmIijQ37W9Flg7BUQgTI2LooCIBU4BEceTAuIcAbE3QrwJnRcR2jt2PDUfBcRTI+c57XaKgOw/chotu4/Arz8OR6YMqedxHjl5Hr2GTMaaBaPh7+ebRigkZza3OIbXZDLj5p27yJEtC3x90p/GE/0wFtIRwlmzZH4iuhQQzxnsT7eUAiI2dhQQcTwpIBQQcaOJMyCiWeqhPAqIHqLs2j46VUCUdG37qimaHcObmJiE9n3GIC4+ActmDU1r3uYdh9D362mIjYuXfzakTxs0qV9d/n/pZwOGz8DGfw7Ir0u9WhiThveQRUV6KCBKouyeaSggYuNCARHHkwLySEDspTqoaRz8/VJzXz1jxoqpScgcDBSrqPzCy90bTHJ+zoBwBsTeceip+Sggnho5z2m3UwREuul8577jiii8+9Zr8HtsRkRRJjsSmc1mfDH6B/y6bpu8Gd4iINKG+bca9kC3dg3RotE7iNh+EJ8NnoT1v4xBvtCcmL3wDyxdFYH5kwbJS8c+HTgehQqEYlj/dhQQO+LgTlkoIGKjQQERx5MCQgERN5pSS+IxvKKJend5FBDvjq879M4pAuIOHXu6DbN+Xo01f+9EvXcrY+3GXWkCIs1+dPm/8TiwYZZ8M7v01P14gCwjLRq9i486DkGt6hXQsUU9+b31EbvR+6upOLrpR/leE86AuGO0lbWJAqKMk9JUFBClpGyno4A4ZwkWZ0D8kDe7CUXyptgehADuxxhw4Kwv8ufkDIgiYF6UiALiRcF0067oQkA2bN6LYePnYemsodiy45B8IpdlBkT6/7mL18p7UyxP90ETUTB/KPp0boIKdTpj+ID2soRIz/F/L6Bxp69gWTpGAXHTka2gWRQQBZBUJKGAqIBlIykFhAIibjSllsQZENFEvbs8Coh3x9cdeuf1AiJtfm/XazTmjB8gX3q45PdNTwiItMRq3abdT+wJkfaDSJvnh/RpjRI12mLqqF6o9kZpOV5nL1xFgzaD8Nfi7xAakh3JKalrhPl4HoHt6xOxdnEC8hXyQZGS6Q8esNaju7dNOLg9GQVf8UH7AaknvPFJJTDvuzicOZaMUq/7InsuZevszxxLweWzKajVOABv1vGe0/EcHROSgAzpEA2DAaheXzmX3RuTEPPQjG7DMiIkr7IYONpWZ+W/dR/48icjMgQANUqbFVezbq8B0q/lCZ1NCPhvD8j5kymY820sgrMZUPbN/36ooMRNvyfKqYbNefLwkWdljWw1Fwl7LyFkbmsEVgxTUIN2SSIOGbB4iwFhIUCJMGU8o6KBHScMeDEU6PfRo3/rVi2IhzTWipT0Rb5CysbZ1Qsm/Hs4GeWr+eH91o+O4Y9sPQ8Jey4i4/ul4Js3WBGQuG1nkHj4GrINqIXMrSspysNE6gjs27sXr79eCaGhoejQoaOizCaTCSNGDIfRaERCYpLNPL4+ysaOzYKYwCMJeL2ADBv/E3bsO4bqb5SRA3T89EUcO3UBjetVw6et38faTbttzoCMGNgB4dXKp+Z/agbk5r0Ejww8Gw3s35SMzb8mI3eYEQWLGRQheXDHjON7TMhX2IjGPZT/YaiocA9PtGJaIi6eNKHoa0YE51TG8+JJM65fMKFqA1+Ur/nodDwPR+Fw8yUBmdgrHhLFSrWVybFU6aGtKYiLAVoODECOUGUxcLixTiogKtqA75b7I8gfeOPVZMW1RBzyhckMDGmRkLYJ/cppE5ZOTkTmrEDxSsp57lyXulSp10Rl91bFdF4A04HLyDC1BXxeK6C4zVok3HHCB6t3+SJfDhNezqfsi7N7Dw3Yf8YHBXKZ8UndVBmTno1Lk3BoWwoKFjMid5iycXbjshnnj5lQsrIP3vnfIwmM7fwzUg5cgm/dEjDmST3cxdaTvOMcTMeuI7DnO/Brlro6gY9YAgcP7EOtt6sgJHdutGzdXlHhkoCMGzNKFpDrd2Jt5skVHGAzDRN4LwGvF5Ctuw7jxOmLaRE8dPwsDh8/i5YfhePjD9/FnoOn5D0gB/+cnbYZvlazfmjVODxtD0jtGhXRofl7chncA+I9HwYuwRIbSy7BEseTS7C4BEvcaEotiUuwRBP17vK4BMu74+sOvXO6gNy5+0D+w95yIaGl0/EJiZDeyxOSXd7MrdXz9BKs2LgEVKjzCQZ0bYbmVk7BkjavL1u9WT4FK0NQADoPGMdTsLQKlpProYCIBUwBEceTAkIBETeaKCCiWeqhPIuA2NNXaQbk8s2HNrPmyZ56TxwffRJwuoBIG7pffaUgPm31/hOEz5y/ivfbPtpLoRX+pwVEqle640Nqp+X5omdLNPugpvwyJjZeviNky85D8usSrxTCpBGfIVeO1LWq3ISuVeTE10MBEcuUAiKOJwXEfQUkafZWJM/ZblewDWXyI3Bqc7vyOpqJMyCOEtRXfgqIvuLtit66TECu37iDd/7XByt+GIZXCud3Rd+fqDMlxYTIW1HIlT3Y6r0k96NjkJSUnHYBoSUzBcTlobO7ARQQu9FZzUgBEceTAkIBETeaUkuigIgm6t3lcQmWd8fXHXrnNAFZ/NtGSMublq6OQJ7cOVClfIm0/iYlJ+Pvrftx7cZtRCyfCB8PPgmBAuIOw9i+NlBA7OP2rFwUEHE8KSDuLyCGMvngU07ZRnPz9QdIWXsUnAExo8TrRtRo8ujAiYSuC+WN+z51isMQqmwTumnnOZiOR8KvR034Nk09IIaPWAIUELE8WVp6Ak4TEGkj95Xrt6wyzxAUiBqVy6DRe2/h9XKvenRcKCCeGz4KiNjYUUDE8aSAUEDEjSbOgIhmqYfyKCB6iLJr++g0AbF069spv6BQWCga16vu2p46qXYKiJPAalAsBUQsZAqIWJ6Teqcee1qsvPKz8s8dMyEhDmgxwB/ZQsS2R+vSpGN4J/4aiEB/4PWitu8UsLRvyxE/+RjeQU3j0o7hvXrGjBVTkyDiJnTLHhBPnQHx9zUjSOHpp8kpQEy8gTehaz343aA+CogbBMHLm+B0AZH4mc1mXLgcicibUXgxLA9CcmbFpas3IM2E5MimbMrVXeNAAXHXyNhuFwXENiM1KSggamg9P61lBsTeEpv390P23NqdLmhvO5+XjwIilqplD4g9pebPaUKH2o/uvIpYnowj/5gQVtSAkALKxtmNK2ZcPM4lWPbwd0UeCogrqOurTqcLiHSKlHR07f4j/8pkv/m8E+qHV0aPwd/jwqVI/D5vpEcTp4B4bvgoIGJjRwERy9MyAyJ9a6/0iXlghslk4AwIZ0DSDRmLgGR/wYT8OZXdhC7Nfpy+auQMiNIPoBelo4B4UTDdtCtOF5AlqyIw6Yfl6N+lGRYs/1O+/E8SkN0HTqJtr2+wadmEtCNt3ZTRc5tFAfHEqKW2mQIiNnYUEHE8uQeEe0DEjabUkngKlmii3l0eBcS74+sOvXO6gDRs9wVqVa+Izq0aoFO/saj/bmVZQKLuRaPqB92xaPoQlCxayB1Y2NUGCohd2NwiEwVEbBgoIOJ4UkAoIOJGEwVENEs9lEcB0UOUXdtHpwtIg9af44M6b6Jd07pPCMjZC1fRoM0gbFg0Fnlz53AtBQdqp4A4AM/FWSkgYgNAARHHkwJCARE3miggolnqoTwKiB6i7No+Ol1Aho3/Cdt2H8G87/8PX347R54BqVn1NfQbNg2Hj5/lPSCujb+ua6eAiA0/BUQcTwoIBUTcaKKAiGaph/IoIHqIsmv76HQBuXs/Gh92+BI3bt2Ve5ovNKe8/Co2Lh6TR36GGpXLupaAg7VzBsRBgC7MTgERC58CIo4nBYQCIm40UUBEs9RDeRQQPUTZtX10uoBI3YuLT8SSVZtw7OR5RMfEoVD+3GhYtyqKFMrn2t4LqJ0CIgCii4qggIgFTwERx5MCQgERN5ooIKJZ6qE8CogeouzaPmoiIK7tonNrp4A4l68zS6eAiKVLARHHkwJCARE3miggolnqoTwKiB6i7No+Ok1ATp29jJjYOJQtUQQGQ+pFRZeu3sSGzXsQdfcB3q1WXn7P0x8KiOdGkAIiNnYUEHE8KSAUEHGjiQIimqUeyqOA6CHKru2jUwQkKSkZlRt0Q+nihTF7bD+5hw8exqJm497y3g/LM35oN4RXK+9aAg7WTgFxEKALs1NAxMKngIjjSQGhgIgbTRQQ0Sz1UB4FRA9Rdm0fnSIgh46fRfMuwzB/0ucoV/JluYcz5q/C9z8sl4WkyIv5MPjbOTh68hw2LZ8AXx8f11JwoHYKiAPwXJyVAiI2ABQQcTwpIBQQcaOJAiKapR7Ko4DoIcqu7aNTBGR9xB70/moK9qydgQxBAXIPW3Yfibj4BCybNVR+vXXXYXQeMA5/LhqLPLwHxLWjQKe1U0DEBp4CIo4nBYQCIm40UUBEs9RDeRQQPUTZtX10ioCsWLNFnuE4svFHGI0GpKSYUKpmOzR9/20M7tVK7vG1yNt4t2lfLJw6GKVfLexaCg7UzhkQB+C5OCsFRGwAKCDieFJAgLsPDZiwMhDSFsIXMpgVw70fk7rncFCzOPj7pma7esaMFVOTkDkYKFbRqLis3RtMctru4/zT8iTN3orkOdthKJMPPuUKKCrLfP0BUtYehaFMfgROba4oj+hEu076Ys0eP+TNbkKRvCmKipdYHjjri/w5TehQOyEtT8TyZBz5x4SwogaEFEjlbeu5ccWMi8fNKPG6ETWa/BcYAAldF8J04DJ86hSHITSLrWLk9007z8F0PBJ+PWrCt6lnL+NW1GEXJKKAuAC6zqp0ioD8s+eofOv5yjnD8fKL+XDg6Gl83G0Ehg9oj4Z1qsqI9x3+F616jMTqn0ahUIFQj8VOAfHY0IECIjZ2FBBxPCkgjwTEXqoUkCfJUUDsHUn6zEcB0Wfctey1UwREuvfjrYY9EJorG1o0egdLV2/GxSs3sHnFxLQlWZPnrMS0n357YpmWlh0XVRcFRBRJ7cuhgIhlTgERx5MCAiSbgCu3rO8P3HPKB0cv+qB8kWSULJQ6S/H0UzDk0bf8nAEBKCDiPp96KIkCoocou7aPThEQqUuWWRDp/zMEBWJwr5ZoEF5F7u3N2/dQ46OeeOv10pj2TS/XEnCwdgqIgwBdmJ0CIhY+BUQcTwrI81mu3+eH7cd9EV4uCVWKJ9sETwGhgNgcJEzwBAEKCAeEswk4TUCkhktH7p6/FImXC+eHn++jb7Ku34zCyTMXUTBfbo9efiX1kQLi7CHqvPIpIGLZUkDE8aSAUEDEjabUkjgDIpqod5dHAfHu+LpD75wqIO7QQWe3gQLibMLOK58CIpYtBUQcTwoIBUTcaKKAiGaph/IoIHqIsmv7SAFxkD8FxEGALsxOARELnwIijicFhAIibjRRQESz1EN5FBA9RNm1faSAOMifAuIgQBdmp4CIhU8BEceTAkIBETeaKCCiWeqhPAqIHqLs2j5SQBzkTwFxEKALs1NAxMKngIjjSQGhgIgbTRQQ0Sz1UB4FRA9Rdm0fKSAO8qeAOAjQhdkpIGLhU0DE8aSAuL+AIFMADJkCFAXdnJgCRMXwIkJeRKhovLhDIgqIO0TBu9ugiYCYzWZcuByJyJtReDEsD0JyZsWlqzfk43lzZFN286m7hoEC4q6Rsd0uCohtRmpSUEDU0Hp+WgqIBwiIHeHmTei8Cd2OYeOSLBQQl2DXVaVOF5CY2Hh0HjAO+4/8K4P95vNOqB9eGT0Gf48LlyLx+7yRHg2cAuK54aOAiI0dBUQcTwqI+wuIoXBOGF8OURb0qBik7DrPGRDOgCgbL26QigLiBkHw8iY4XUCWrIrApB+Wo3+XZliw/E98/OG7soDsPnASbXt9g03LJiBXjmCPxUwB8djQgQIiNnYUEHE8KSAeICBl8sGnXAFFQTdff4CUtUcpIBQQRePFHRJRQNwhCt7dBqcLSMN2X6BW9Yro3KoBOvUbi/rvVpYFJOpeNKp+0B2Lpg9ByaKFnE45ITEJt+7ck5d9ZQvOnK4+k8mMm3fuykvCfH0eXZpoSRj9MBbJKSnImuXJvBQQp4fOaRVQQMSipYD8f3vnHd9E+cfxT5q2tKxCyyoyRARRAQUZykaUPQRFGbKH7CmCIAKyRGVIAUUQFBAERFSWoDIFEZQtCsKPLXuU2ZXm93qemkjbQJPc5XJ3+dw/WvrM9/fpJe97xqnHkwJCAVFvNKWUxBcRqk3U3OVRQMwdXz30zucC0rjdULxQrwo6tqifSkCOHj+Dxu2HYd2XH+CBfLl8yuKtCZ9i+ZotzjrKliqOmDF9kCMiq/y3Tb/sxevvfCTf3C6uEQPb4+VGNeT/i38bPGYm1m/dLX8u/VhRmdexd4UC4tPQ+bRwCoi6eCkg6vGkgFBA1BtNFBC1WQZCeRSQQIiyf/vocwEZPXkeft6xH59PfRNvvzdHzoDUqvoUBo3+CPsOHsXGZR/Cag3yKYWZ81egSoVSKF60IM6ev4TWPcegzUu10fXVRrgTl4BqTfugV8emaN3sOWzctgd9h8dg7aL3USA6N2YvXIWlKzZifswwhIeFovuQyShSKBqj3+go20wB8WnofFo4BURdvBQQ9XhSQCgg6o0mCojaLAOhPApIIETZv330uYBcjb2BFzu/jfMXr8qeii/1YvmVmFmYNq4valYqoymBxMQkPNu8P3p3bIaXG9eUsx893pyM3etmITQ0RLal/quDpYy0bvY8XuoyAnVqlEeX1g3l79Zu3IEBI2fgwIa5sFgsFBBNo6duZQ4B8abUB4pa0KxnynjhlUKAAqLeSKCA+EZArMFAlmwWtwN1/apdpu09KdSZJ3H2FiTN2QYL94CgcAkL8hZyj+f503ac4B4Qt8eevxNSQPwdAfPX73MBEQjFLMOSFRvwx1/HcOPWHRQpmA9N61dFsSIFNCOckJCIOV+uwabte5E7KgLjhnRB1izhEJvkP1u8BqsXTHC2pfewD/FgwWgM7PYyytfrhjGDO0kJEdfBw8fRvOtIbFsxHRHZslBANIug+hVRQNRlSgFRjycFxDcC4m2EKCDJ6Fw33olv47Ik7N+aTAHxdkAZIB8FxABBMngTNREQPTASEjTs3dn468gJ5MmVE+OHdkV0nki5xOr7DTvw1axRzmaK/SBZM4djxMB2KFmzA2aM74/qzzwhf+/Yu/Lj4omIzhulh66xDV4S+Pn7eKxaFIeCDwWjeOn0Bw+4KvbqxWTs2pqIIo9Y0XVoyh4iXikE5rx/C38fSMKTz4QgKq97yypF+pNHbKj3Shiq1XfvpW6BwFsIyLAOsbBYgGebuM9l+08JuHXDjn7jsiHvA+7FwIg8l24B1v0OvFQFqFMu4x7cuW3H2RM2lwlXfHEH504lo0GrMOQv5Po+8NCjwc68V2I24Oq0TQgrXwjhFd07QCXpTCxDmf07AAAgAElEQVRuLN+DsPKF8cCCDhk32Acp1u8BFm0EHswLlHKv2bhyA9j6B1A0Ghjyyn+N+nbeHYixVrx0MAo+5N698/QxGw7tTUKFGqFo2iHcWdiZV+cibucJZH3hCYQUcO9EzNubjyB+3xnkerMuIto/7QNaLPK3335D+fLlER0dja5du7oFJDk5GaNHj0ZQUBBsNtd/b24VxEQBQUATARHLr7bu3I+TZy6kgypOxwrL9N/0tq+pi5cidhn0AfLljpQzG+7MgIwd0hm1q6d8ynEGxNcR0q587gFRlzVnQNTjyRmQ+7Nc+3sIth0MRu2yiaj8eJIi8MumJeKf/9nRrEcIHng44+VEziVY+bIjKL97L9JNvh4H+5GLPIaXS7AUjVUtM3MGREvagVmXzwXEsWdC4BXH34aE/PckSfzbt3PHIlvWzJrSHzd1Af538ixmfzDIuQdkzw+znW2r03IQ2jav7dwDUrdmBXRu1UC2kXtANA2VTyujgKiLlwKiHk8KiP4FxJto803ofBO6N+PGH3koIP6gHlh1+lxAXnltFLJkDsO0cf2QOdz9pQRqheHmrTv4ZMEKNK1XFQXy55EzGJ0Hvi+F4rU2jXD7TjzK13sNg3u2RCsXp2DN+mIlvlq5SZ6CJdov3urOU7DUio5/y6GAqMufAqIeTwqIfgUkedcp2HYdd9lA2+oDsJ+7Dmu9x2GJTj87EpQ/J6z1S6o3UDwoie8B8QAWk4ICwkHgawI+FxDxHpC6z1ZEj3ZNfN0Xl+Xfuh2Hdn3H48+/Tzh//0LdKnh7QDtk+vfUK/GOD7Hx3HG91a8NWr5QS/4o8os9IZu375U/l3ykCGLG9nW+vZ3H8PolrKpUSgFRBaOzEAqIejwdAuJtia3eCEFUvoyXE3lbvr/ynbkUhESbBTsPWXHghBXliiWhVJFkhIXakS9nslfN8nQJ1v0qieuxEPY9p5BpWisElS3oVXt8lYkC4iuy5iyXAmLOuOqpVz4XkA8+Xow9B45gwbRhfu23EInLV2ORKzKHy5kYmy0Z5y5eQZ6oHOmWiYmGx964BXGEr+MFhI7OUED8GlZFlVNAFOFLl5kCoh5PCohrllO/zYTL19Nvri+UJxmd6vx3SpMnkaCA3JtW7C0Ldh8NRsHcvjsFyyFtVrGhPzKLW6FLPvgP7CeuILRvLVhfceMUArdKZaK7CVBAOB58TcDnAvLt2q0YOn4WOrSoh+g86U+Nat6wuvP9G77urC/Kp4D4gqo2ZVJA1OVMAVGX571K2/dzMjZ9nYRSlYNQ48XUe+q0aYH/alm2NQSxN9MLiJj9qF8h0auGUUD0ISDeBI8C4g019/JQQNzjxFTeE/C5gPR7exp+2PzbPVvoeJ+G913wb04KiH/5K6mdAqKEXvq8FBB1eVJAtOFJAfGvgCRM/hHJf6c/IRPxSbD/eRYIDYblsWiXjQxt/hSCaj6izUAJsFooIAEWcD901+cC4oc+aVolBURT3KpWRgFRFSffhK4uznuWFsgzIL5ATAHxr4Dcq3b7icuIazkbloKRCFvcxRehZ5n3IUAB4fDwNQFNBES8e+P4qXM4d+EKHiqcH3lz58TJM+eROTws3Z4KX3dY7fIpIGoT1a48Coi6rDkDoi5PzoBow5MCQgHRZqQZqxYKiLHiZcTW+lxAxOZvcXTtrv2HJZ93h3ZFo9qV0Gf4VBw/eQ7ffT7OiNycbdZSQC6eTsbP33p30otocNOegbVePKOBRQHJiJBnv6eAeMbL29ScAfGWnOt8FBAKiLojyhylUUDMEUc998LnAiLeNB7z6TK80aMlFiz7Aa+++LwUkB27/0KH/u9iw1dTnEfa6hnUvdqmpYCcPpKM5TO8f+tv70navXHeCLGkgKgbJQqIujw5A6INTwoIBUSbkWasWiggxoqXEVvrcwFp2vEt1KlRAd3aNkbXQR+g0fOVpIBcuXYDVV/ojS8/HoFSJYoYkZ1ssz8EJDwrULhE+pNg7gXxr99SZk0oIKkJUUDU/bOjgKjLkwKiDU8KCAVEm5FmrFooIMaKlxFb63MBES8ifKFeFXRsUT+VgBw9fgaN2w/Dui8/wAP5chmRnd8EJFtO4NEKVreZ7Vhro4C4oEUBcXsIuZWQAuIWJsWJuARLMcJUBVBAKCDqjihzlEYBMUcc9dwLnwvI6Mnz8POO/fh86pt4+705cgakVtWnMGj0R9h38Cg2LvsQVqv7T/P1BtMfMyAUEHVGAQVEHY6OUigg6vLkDIg2PCkgFBBtRpqxanEIiDetDgoKwqkLNzPMmj8qPMM0TGBeAj4XkKuxN/Bi57dx/uJVSbFAdG65/Or2nThMG9cXNSuVMTRdCohxw0cBUTd2FBB1eVJAtOEZaAKSLdyOyOzuHWYSn2DBuatBPn0T+r2izGN4tRn/96qFAuJf/oFQu88FREC8E5eAJSs24I+/juHGrTsoUjAfmtavimJFChieMQXEuCGkgKgbOwqIujwpINrwDDQB8YZqwdzJ6Fw33pl147Ik7N+ajMIlLMhbyOJWkedP23HioB0lnw5CzZczPpGRAuIWVr8kemNAL3wxbw4mTIzBq+06ed0GzoB4jc4UGTUREFOQukcnKCDGjS4FRN3YUUDU5UkB0YZnoAjImUtBOHzG9XLnHYeCcTvegvLFk5AlzJ4OfERWoGzR/05gpIBoMzb1WgsFRK+RMVa7fCYgW37dhz//PoFm9avJlw1euhKLr1ZuSkWn2tOl8VjxB41FLE1rKSDGDR8FRN3YUUDU5UkB0YanUgGxn42Fbc0B2dikVfshfrbWL4mg/DkQ9GQhBJUtqE1HFNQy7bswXIy1oGejOOTJkV5A0hZNAVEA2wRZKSAmCKIOuuATAUlOtuO5Vwbg4QcfwMz3BsJiseDQ0VNo1ml4qi7XqVEek0b21AEG75vgDwHJFG5Brgfcm/YWPTtzhMfwuoowBcT7ce8qJwVEXZ5pS7t8Foi7ZceRfTaIk7AeKhmEJ6tZYQ0G8j3o/v3At600XulKBSR51ynE91rosuPBHSshpHNV3UOhgOg+RLpqIAVEV+EwbGN8IiAHDx9H864jMT9mKMqWKi7hOATk+4XvoWD+PFi7cQcGjJyB3etmITQ0xLAA/SEg3sLie0BSk6OAeDuSXOejgKjLM21p332SiBN/pX86LU7Faz+cLxn1lr5SAREzHkmr9rms3lr2Qc6A/EuGe0C8HaH6y0cB0V9MjNginwjI2o07MWDkdOz7aY7ziN20AnL67EXUaTkIK+eNR5FC0UZkJ9vsDwEJDQNyezIDcjTlSwsFhALiyz80Cogv6QJbVybh3PH0ApIluwV122a8qde3rTNu6UoFxLg9/6/lnAExQxS16wMFRDvWZq7JJwKyfM0WTJq5BFu+iXGy++fcJbw7fSHe7t/OuSekerO+WDhjOJ54rKhhGftDQPgeEHWGC2dA1OHoKIUCoi5PlqYNAQoIQAHRZqyZpRYKiFki6d9++ERAft93GG37jMOvqz5C1iyuXzSza/9htOk9DhuXTUHuqBz+paCgdgqIAnh+zrpnsw1bvrEhSwQQEeVeYxLigEv/APkfsuDFXsZdOuhebz1L9e3HiTh52I6oaCCTm++Xir0M3IoFKjcKRtmaxn0hqWekmFoPBP75d2Z40/IkXPrHjmpNg5E7vwVZI4HsOQNrTw0FRA8j0jhtoIAYJ1Z6bqlPBES8fLBKk97o0+lFvNamUbr+2+12dB8yCX8cOo7Ny6fKTepGvSggRo0c4BAQb3pAAUlPzTED4g3Pyo2sKFvT6k1W5iEBrwjEDEhwma9C7SBUrBtYS9ooIF4NoYDNRAEJ2NCr2nGfCIho4UfzvsW0OcvRvW0TtHmpNiKyZ4EQj1P/XMCUWcvkJvTxQ7ugce3KqnZI68IoIFoTV68+sZ7+xF82lwXu/TkZ8beB0lWCEJY5fZLsUUF4tDyf2N9NhjMg6o1NluR7AmLplavrsYrWgPvbpoD4fryZqQYKiJmi6b+++ExA4hMS8e60hVjy3QbZu8zhYbh9J87Z025tG6Nn+6YICjLu7IfoDAXEf4PXlzXPG5+I2It2tBkSghx5jD1GfckplYDMTMLJQ8koXtaCHLncY3bykB3nTtjBGRCtosR6SCA9AQoIR4UnBCggntBi2nsR8JmAOCrcd/Aodu49hP+d+EcetyveDVKhTAkUK1LAFFHxh4BkzmZB4RLuP33/c2fKU36eguX+kKOAuM/KkZKb0D1nxhwkoAcCFBA9RME4baCAGCdWem6pzwVEz51Xo23+EBBv200BcZ8cBcR9VhQQz1kxBwnoiQAFRE/R0H9bKCD6j5ERWkgBURglLQXk4ulkbPnW9Z4Fd7rRrCdPbXKHk0hDAXGX1H/pOAPiOTPmIAE9EKCA6CEKxmkDBcQ4sdJzSykgCqOjpYAobCqze0CAAuIBrH+TUkA8Z8YcJKAHAhQQPUTBOG2ggBgnVnpuKQVEYXQoIAoB6jQ7BcTzwFBAPGfmrxx3Kk1wWbXlyYIIm9HKX81ivX4iQAHxE3iDVksBMWjgdNZsCojCgFBAFALUaXYKiOeBoYB4zsxfOSgg/iKvz3opIPqMi15bRQHRa2SM1S4KiMJ4UUAUAtRpdgqI54GhgHjOzN85EmdvQdKcbQjuWAkhnav6uzms308EKCB+Am/QaikgBg2czppNAVEYEAqIQoA6zU4B8TwwFBDPmfk7BwXE3xHQR/0UEH3EwSitoIAYJVL6bmfACMiduARcvXYd+fJEuXz5YXKyHRcuX0WuyAgEW63ponbj5m0k2WzIGZEt1e8oIPoe4N62jgLiOTkKiOfM/J2DAuLvCOijfgqIPuJglFZQQIwSKX23MyAEpPewD7F+624Zicgc2fBC3aoY2O1lZ2Q2/bIXr7/zkfNN7SMGtsfLjWrI34u3tw8eM9OZv/RjRREzpo8UFXFRQPQ9wL1tHQXEc3IUEM+Z+TsHBcTfEdBH/RQQfcTBKK2ggBglUvpuZ0AIyLQ5y1G7RnkUeiAPtv9+ED2HTsGXH72NUo8+BDEzUq1pH/Tq2BStmz2Hjdv2oO/wGKxd9D4KROfG7IWrsHTFRsyPGYbwsFB0HzIZRQpFY/QbHSkg+h7bHrfu2kU75o9PdJmvSiMrytRMPzPmcSUmzkABMV5wKSDGi5kvWkwB8QVV85ZJATFvbLXsWUAISFqgzzbvjxZNnkXXVxtBzH70eHMydq+bhdDQlBf11X91sJSR1s2ex0tdRqBOjfLo0rqh/N3ajTswYOQMHNgwFxaLhTMgWo5WH9dFAVEGmAKijJ8/clNA/EFdf3VSQPQXEz23iAKi5+gYp20BJyAnTp+XgjFjfH9Uf+YJLFmxEZ8tXoPVC/47F18s2XqwYLRcplW+XjeMGdxJSoi4Dh4+juZdR2LbiumIyJYFF67FGSfabCkJ+JDA1x8l4sRfySjxVBBy5La4VdOJv+w4ezwZVRsHo1wtzjC5BU3FRPGztiBh9laEdq6MTF14CpaKaA1V1IffZMKFaxb0aRKPvDntGbZ9/dIk7P3ZhgcfDUK+wu79rZ8/ZcexP5JRqpIVz70SnGEdyccv49YrsxBUKBJZlnbNMD0TaEdgYL+eWPD5HHwweRratO/kdcV5coR5nZcZjU8goATk1u04vNprDLJmyYzPpgyB1Rokl1h9v2EHvpo1yhlNsR8ka+ZwjBjYDiVrdnDKikhw9PgZNG4/DD8unojovFFITEo2/ihgD0hABQLzJt3BkT+SUOrpYETlCXKrxKN/2HDqqA21m2dClbqhbuVhIvUIXJu+EddnbEb2HtWQo2fKvjdegUfgnYVBOHcFGN4yGdFRGfd/5YI47NiQiGKlgvFAEff+1s8cT8bf+5JQrloIGrfL+Itn4v8u4WyjGQh5MArRq3pm3Cim0IxA9+6v4dPZszFjxsfo3KWL1/WGBLs3dryugBl1TSBgBETs9eg7fCrOXbiCeVOHIkdEVhkYd2ZAxg7pjNrVy8n0aWdAuAld1+Pb742z34iD/e8Lsh2WYnlgyZbxB6/fG+1lA7gEy0twfszGJVh+hK+jqrkES0fBMEBTuATLAEEyQBMDQkCu37yNPm9NxZ078Zj53kCnfIj4OPaA7PlhNkJCUqaF67QchLbNazv3gNStWQGdWzWQv+MeEAOMap000bbrJBKHLIf9ZsoyPUvWMGSa1gKW4nl10kJ1m0EBUZenFqVRQLSgrP86KCD6j5GeWkgB0VM0jNsW0wvI7TvxaNFtlHyHx+RRvZA1S7iMVlBQEKLzREL8vny91zC4Z0u0cnEK1qwvVuKrlZvkKViZwzOh2+BJPAXLuONd05bHtZvrnP1wVBxUpiAyTW+laTu0qowCohVp9eqhgKjH0sgleSsg3vS55NNBqPlyxntA7CcuI67lbFgKRiJssffLfLxpI/PcnwAFhCNEDQKmF5DzF69CnHqV9hLvA9nyTYz8Z/GOELHx3HG91a8NWr5QS/4o9o2IPSGbt++VP5d8pAhixvZFnlw55M9cgqXGMDRnGXcq/Xewwd09DN822JQdpoAYL6wUEOPFzBctpoD4gqp5y6SAmDe2WvbM9ALiLkybLRnnLl5BnqgczqVYd+eNvXELiYlJzhcQOn5HAXGXcOCli3t+Cuy34lN13JIvO8K+7m5KGBQQ44WVAmK8mPmixZ4KyP3aEDMgQf6618RQWNw7IMtlcZwB8UWk1SmTAqIOx0AvhQKicARQQBQCNHH2xE9/RtKnW1P1MLhTZYR0qmLKXlNAjBdWCojxYuaLFlNAfEHVvGVSQMwbWy17RgFRSJsCohCgybPbVu2H2IwuLmvZQrA2KGXaHlNAjBdaCojxYuaLFlNAfEHVvGVSQMwbWy17RgFRSJsCohAgs5uGAAXEeKGkgBgvZr5oMQXEF1TNWyYFxLyx1bJnFBCFtCkgCgEyu2kIUECMF0oKiPFi5osWU0B8QdW8ZVJAzBtbLXtGAVFImwKiECCzm4bAtx8n4uRhO6KigUwpp11neMVeBm7FApUbBaNsTb4VN0NgKieggKgM1KDFUUAMGjg/NZsC4ifwJquWAqIwoBQQhQCZ3TQEHALiTYcoIN5QU56HAqKcoRlKoICYIYra9YECoh1rM9dEAVEYXQqIQoDMbhoCh36349pFW7r+xN0G9v2cjNBw4Mmqrmc5CpWwIvpBBWd2moaith2hgGjLW6+1UUD0Ghl9tosCos+4GK1VFBCFEaOAKATI7KYnEHvJjnnjEpE90oJ2b4WYvr9G6iAFxEjR8l1bKSC+Y2vGkikgZoyq9n2igChkTgFRCJDZTU+AAqLfEFNA9BsbLVtGAdGStvHrooAYP4Z66AEFRGEUKCAKATK76QlQQPQbYgqIfmOjZcsoIFrSNn5dFBDjx1APPaCAKIwCBUQhQGY3PQEKiH5DTAHRb2y0bBkFREvaxq+LAmL8GOqhBxQQhVGggCgEyOymJ0AB0W+IKSD6jY2WLaOAaEnb+HVRQIwfQz30gAKiMAoUEIUAmd30BCgg+g0xBUS/sdGyZRQQLWkbvy4KiPFjqIceUEAURoECohAgs5ueAAVEvyGmgOg3Nlq2jAKiJW3j10UBMX4M9dADCojCKFBAFAJkdtMToIDoN8QUEP3GRsuWUUC0pG38uiggxo+hHnpAAVEYBQqIQoDMbnoCFBD9hpgCot/YaNkyCoiWtI1fFwXE+DHUQw8oIAqjQAFRCJDZTU9ALQGxHz6PxA/Xw7b7JCzREQiuXxLBnaqYnp/iDt6Ih/3IeZfFJK7aD9vqA7DWL4mQBqVcprGUKaS4CSxA3wQoIPqOj95aRwHRW0SM2R4KiMK4UUAUAmR20xNQQ0DsN+IQ/+JM2G/GpeIVOqw+rPf44mx6sG52MHnXKcT3Wuhm6vTJwrcN9jovMxqDAAXEGHHSSyspIHqJhLHbQQFRGD8KiEKAzG56AmoIiG3XSST0WpSOlbVeSYQOb2B6hko66BSQECsQmcX9os5fl2kpIO4jM2pKCohRI+efdlNA/MPdbLVSQBRGlAKiECCzm54ABcS/IXYKSN7sCG5Q0u3GJM3ZRgFxm5axE1JAjB0/rVtPAdGauDnro4AojCsFRCFAZjctgfMn7Dj+pw1xt4F9PycjNBx4smqQ7G/pqsEI9+BhvFyC1exj2G/Fp+LFJVgZDx8KSMaMAj0FBSTQR4Bn/aeAeMaLqV0ToIAoHBl6EZDTR5KREGdBpjDggYctCnvF7CSgnMC+LcnYtDzJZUGvDglFzjye1WHb/DcSP/0Z9r8vwJIlE6wtyiGEm9AzhEgByRBRwCeggAT8EPAIAAXEI1xMfA8CFBCFQ0MPArLwg0Rc/sfu7MlDJYPQoGOwwp4xOwkoI+CYAXFViqczIMpaEti5KSCBHX93ek8BcYcS0zgIUEA4FtQgQAFRSNHfArJ7kw0/f2tL14umPYJR4OGU5S68SIAEApcABSRwY+9uzykg7pJiOkGAAsJxoAYBCohCiv4WkF/X2rBjbXoBqdLEijLVrQp7x+wkQAJGJ0ABMXoEfd9+CojvGZupBgqImaLpv75QQBSy16uAcAZEYWCZnQRMQoACYpJA+rAbFBAfwjVh0RQQEwbVD12igCiE7m8Bibtjx+ejE5Fw1/vZsuUEWrwegrBwbkZXGF5mJwHDE6CAGD6EPu8ABcTniE1VAQXEVOH0W2coIArR+1tARPOFhOzdnCx7EhoGPFohiPKhMK7MTgJmIUABMUskfdcPCojv2JqxZAqIGaOqfZ8CSkCSk+2w2+2wWtNvzha/u3D5KnJFRiDYmn7vxI2bt5FksyFnRLZUUdKDgKg1bMQRp67mTCxlCsFatpBa1bAcEiABDQlQQDSEbdCqKCAGDZyfmk0B8RN4k1UbMAIixGPkxM9k+Ea93iFVGDf9shevv/MRbt9JWcc0YmB7vNyohvx/8W+Dx8zE+q275c+lHyuKmDF9pKiIy0wCcqfSBJfDO7hTZb5vwWR/+OxO4BCggAROrL3tKQXEW3KBmY8CEphxV7vXASEgazfuwJgp83Hl2g281LB6KgG5E5eAak37oFfHpmjd7Dls3LYHfYfHYO2i91EgOjdmL1yFpSs2Yn7MMISHhaL7kMkoUigao9/oaDoBETMg4rKt2g/7ueuw1isJS/4IBHEGRO2/O5ZHApoRoIBohtqwFVFADBs6vzScAuIX7KarNCAE5PadeFy/eQuTP1mKsEyhqQREzH70eHMydq+bhdDQEBng+q8OljLSutnzeKnLCNSpUR5dWjeUvxMyM2DkDBzYMBcWi8VUMyCO0R3fcyGSd59C6LSWXHpluj95dijQCFBAAi3inveXAuI5s0DOQQEJ5Oir1/eAEBAHrncmz4PNZkslIEtWbMRni9dg9YL/lh/1HvYhHiwYjYHdXkb5et0wZnAnKSHiOnj4OJp3HYltK6YjIlsWCoh6Y5ElkQAJ+IAABcQHUE1WJAXEZAH1cXcoID4GHCDFB7yAiCVW32/Yga9mjXKGXOwHyZo5HCMGtkPJmh0wY3x/VH/mCfn7o8fPoHH7Yfhx8URE543C1ZsJphsq17ssQNKuk8g2szVCyhU2Xf/YIRIIJAJJv53E9dcWwJIvOzI1Lu121+M+SVmSGfn7ULfzMKExCXzwVQguXLNg4IuJyJvTrqgT7/W8I/MPmhYOi4KT4G3HLiP2pZmwFo5ExNfdFLWJmdUl0K93D8z77FNMnjod7Tp09rrwnFlDvc7LjMYnEPAC4s4MyNghnVG7ejkZ7bQzIHfi07+F3OjD4lLHeUj47QSiPm2LTOUpIEaPJ9sf2AQSdp7ApU7zEBSdHZmbpDxIcee6+fEWmSz/vuHuJGcaAIl/nYP9RhxCyz9oKB7jvrTi3FXgzVdsiI5U1vR3ut6UBQyfmVWRgCQdu4QLTT5CcOEo5FnRQ1mjmFtVAr16dMOcObMRM/0jdOrUxeuywzOlP3HU68KY0XAEAl5AHHtA9vwwGyEhwTKAdVoOQtvmtZ17QOrWrIDOrRrI33EPiOHGOBtMAgFNgEuwfB9++z+xiO+9CPazsbIyS9YwhLxVH9ZqxXxfuQo1cAmWChADqAguwQqgYPuwqwEhIDZbMpKTkzHmw/lISrJh5MD2sFqtCAqyQGxQL1/vNQzu2RKtXJyCNeuLlfhq5SZ5Clbm8EzoNniSaU/BcowzbkJX/hcnnoLa/77gsiBLsTywZAtTXglLIAE3CFBA3ICkMEnC4GWwbTmSqhQhIWHr+iosWZvsFBBtOJulFgqIWSLp334EhIAs+W4DRk36PBVpcYxus/rV5L+Jd3yIjeeO661+bdDyhVryx1u34+Q7QjZv3yt/LvlIEcSM7Ys8uXLIn830HhAKiHp/jLZdJ5HQa5HLAnm6mHqcWVLGBCggGTNSmsLx0CZtOeHbBistWpP8FBBNMJumEgqIaULp144EhIC4Q1jMkpy7eAV5onI4l2LdnS/2xi0kJiY5X0Do+B0FxB26gZfGfvg8Ej78SXZcHGksrqAyBeV/Q/vWgqV43sCDwh77hQAFxPfYKSD/MY4ZkHIwS6+JoYr2gNhPXEZcy9mwFIxE2GLv9xn4PvqBVwMFJPBi7oseU0AUUtWDgBzdn4x9m5NTvtyGA09UC0KBh4O87hmXYHmNzmVGxxvmjfI0VN3eszR/E3AKSGQWBD/t/ubopNV/yKZz3GYcwaQvf0Pi1JQHDo7LWvVhhE54MePMOkjBGRAdBMFATaCAGChYOm4qBURhcPwtIBdPJ+PLSUmpepEp3IIWA4ORPdK7MxApIAoHRZrsFBDlPMUmX/u5lA2+aa+gsoWUV2DiEpwC4mUfKSDugbOt2g/b5sOw34yHtWpxWBuUNMxeLwqIezFmqhQCFBCOBDUIUEAUUvS3gPy61oYda9MfBVy/QzCKlvJuFoQConBQUEDUBSiON/30ZyR9utVlufyCfC2qQC4AACAASURBVH/cTgEJsQKRWdyPzfnrMi35uo/MqCkpIEaNnH/aTQHxD3ez1UoBURhRvQrIcy2seLSCd2dsU0AUDgoKiGKAYhP/3fN3SasPwLZ6v8tyM01rmerfecpYakzcA6J4OJq+AAqI6UOsagcpIKriDNjCKCAKQ+9vARH7P1bPTb0ES3SpxYBg5C7AGRCF4VUlO5dgeY7RwczznABPGaOAeDNuAjkPBSSQo+953ykgnjNjjvQEKCAKR4W/BUQ0f/M3Sdjr2IQeBlSoY0WZ6t7NfojyOAOicFBwBkQxQIeAWPJld7+sy7dgT7RRQNIQ4wyI+0MoUFNSQAI18t71mwLiHTfmSk2AAqJwROhBQLzpgtjUa1vjekmLWO4i3uhrrV8KQdHpvwBa8kXA2qCUN9UGZB7OgHgedgez4E5V3M5sW7UP9nPXKSAUELfHDBOmEKCAcCR4QoAC4gktpr0XAQqIwrFhVAG534vyMkIi3meRaXqrjJLx9/8SoIB4PhQoIJ4zu1cOzoCox9KsJVFAzBpZ3/SLAuIbroFWKgVEYcSNLiCWrJkgNu26dd2IR/KRC/KFehSQ1MSE0Nl3n3SJMfHf05tCOlV2+XtLmUKw8ijZVGwoIG79RbqViALiFqaATkQBCejwe9x5CojHyJjBBQEKiMJhYXgByZcd1gal3aLgWLZFAUmP637HxGYEN7hTZYR4sNQoo/LM8HsKiHpRpICox9KsJVFAzBpZ3/SLAuIbroFWKgVEYcQpIAoBmiS7Q0DEpmlLdIRbvRL7bMSeBQpIelwUELeGkFuJKCBuYQroRBSQgA6/x52ngHiMjBk4A6L+GKCAqM/UiCU6BETMDgWVLexWF5J3nUDy7lMUEBe0HAJirV/SLZYikW37MeDKLW5CT0OMAuL2EArYhBSQgA29Vx2ngHiFjZnSEOAMiMIhQQFRCNAk2Skg6gaS7wFRjycFRD2WZi2JAmLWyPqmXxQQ33ANtFIpIAojTgFRCNAk2Skg6gaS7wFRjycFRD2WZi2JAmLWyPqmXxQQ33ANtFIpIAojTgFRCNAk2Skg6gaSe0DU40kBUY+lWUuigJg1sr7pFwXEN1wDrVQKiMKIU0AUAjRJdgqIuoGkgKjHkwKiHkuzlkQBMWtkfdMvCohvuAZaqRQQhRGngCgEaJLsFBB1A0kBUY8nBUQ9lmYtiQJi1sj6pl8UEN9wDbRSKSAKI04BUQjQJNkpIOoGkgKiHk8KiHoszVoSBcSskfVNvyggvuEaaKVSQBRGnAKiEKBJslNA1A2kQ0CCPHhDfPLhC8DNOB7DmyYUFBB1x6ZZSotPsGDbn1bZnR2HgnE73oLyxZOQJcyOh/Ino3DuZK+6GjMgQebrNTEUFotXRchM9hOXEddyNiwFIxG2uIv3BTGn6gQoIKojDcgCKSAKw04BUQjQJNkpIOoGksfwqseTAqIeSzOVFHvLgklfh7ns0vNlklClZKJX3aWAeIXNUJkoIIYKl24bSwFRGBoKiEKAJsn+35vQI2DJ7+ab0P8Rb0KP5YsIXYwBwdPVZf8nFrY1ByDeOG9tUMplmuB6pdyOgUmG33274RSQrJlgLZ7H7S7bdp2SacO3DXY7DxMah8DdMyBpW80ZEOPE0R8tpYD4g7r56qSAKIwpBUQhQJNkdwiIN90J7lQZIZ2qeJM14PLYdp1EQq9FEG+czzS9VcD135sOOwXEm8wUEC+pBW42zoCYP/YUEPPHWIseUkAUUqaAKARokuz/zYBkhyXazRmQs2IG5DpnQDwYAxQQD2D9m9R+NhZJq/a5zChmOex7TsHyZEFYyxZ0mSakc1XPK2WOgCVAATF/6Ckg5o+xFj2kgCikTAFRCNAk2bkHRJtAUkDU5Zw4ewuS5mxDcMdKoGioyzZQS6OAmD/yFBDzx1iLHlJAFFI2uoAgMgusTxdxi4L98i0k/3qMy19c0KKAuDWEFCeigChGmKoACoi6PFkaQAEx/yiggJg/xlr0kAKikLLhBcSL/nP9fXpoFBAvBpIXWSggXkC7TxYKiLo8WRoFJBDGAAUkEKLs+z5SQBQyNrqAWEKsQFQW9ygk2GC/coszIJwBcW+8+CAVBURdqBQQdXkGamnXLtpx6Heb7P6OdSnvDyn/fJB8D0jxssHI6f7ha06EfA+IfkcTBUS/sTFSyyggCqNleAGRx5mWdotCyhGo+ykgFBC3xosvElFA1KEa33ORLEgcAy02qYuDEyz5ImB5ODdC+z+nTiUsJWAInPjTju9muX5vSMNOISjyuOdvJKSA6Hf4UED0GxsjtYwCojBaRhcQb7rPJVjpqTlPwXo4D4LcfNeCeHO3/cgFnoLlwSCkgHgA6z5J7/WiR3EaVtgMHm+sDuXAKeXuGZC0veYMiHnGwe87f0V8QjxmTv8QP65bg9d69MVzdeohMjIKJR593OOO5o8K9zgPM5iHAAXEzVjeuHkbSTYbckZkS5WDAuImQJMn43tAtAkwBUQdzuLdIK4uS7ZMsBTzYr2MOs1iKSTgJMAZEP0NhqdKFsW5c2fTNaxOvYaYM3+Jxw2mgHiMzFQZKCAZhPP2nTgMHjMT67fulilLP1YUMWP6IFdkyrsejCog9+t2fM+FSN59CqHTWsJatpCpBryvOmNbtR9Jq/e7LF6wFJeYOXJ1Bdcvdc+3evuqvUYtlwJi1Mix3STgGQEKiGe8tEjdtUMrXLlyOV1V5StWwuChIzxuAgXEY2SmykABySCcsxeuwtIVGzE/ZhjCw0LRfchkFCkUjdFvdKSAmOpPQd3OOPbLiFITP90qCw/pVFn+11qvFCz53XtZobqtMn5pFBDjx5A9IAF3CFBA3KFk7DQUEGPHT2nrKSAZEHypywjUqVEeXVo3lCnXbtyBASNn4MCGubBYLJwBUToCTZrf8UXZVfc4s+R90Ckg3rNjThIwAgH7+euwn4mF/cINJLyzApY82RD6diPZ9KCS0UBosBG6wTa6QYAC4gYkEyehgGQQ3PL1umHM4E5SQsR18PBxNO86EttWTEdEtiwUEBP/cSjpmpgBSVrjeklWMGdAPEYrxMO++ySSz16HbfV+eWpTcP2SspzgTlU8Lo8ZSIAE9EkgaeFOJE5b77JxYctegyU6hz4bzlZ5TIAC4jEyU2WggNwnnHa7HSVrdsCM8f1R/ZknZMqjx8+gcfth+HHxRETnjTLVYDj6yEiX/cnZqzoie9c0VV/ZGWMRuBKzAVenbXLZ6KKHXI9bY/WQrSUBEhAEbq4+gNiFO13CyDfpJVjzpD4IhtRIgASMSYACkkHcxAzI2CGdUbt6OZky7QyIMcPuutUUEDNF01x9ufPrcdzZccxlpyjH5oo1e0MCJEACJGB+AhSQDGIs9oDUrVkBnVs1kCkDYQ+I+Yc9e0gCJEACJEACJOBPAlyC5U/6/q+bApJBDGZ9sRJfrdwkT8HKHJ4J3QZPMv0pWP4flmwBCZAACZAACZCAmQlQQMwc3Yz7RgHJgNGt23F4/Z2PsHn7Xpmy5CNFEDO2L/LkStkIZ8b3gGQ8bJiCBEiABEiABEiABLwnQAHxnp0ZclJA3Ixi7I1bSExMcr6A0JGNAuImQCYjARIgARIgARIggX8JUEACeyhQQBTGnwKiECCzkwAJkAAJkAAJBBwBCkjAhTxVhykgCuNPAVEIkNlJgARIgARIgAQCjgAFJOBCTgFRM+QUEDVpsiwSIAESIAESIIFAIEABCYQo37uPnAFRGH8KiEKAzE4CJEACJEACJBBwBCggARdyzoCoGXIKiJo0WRYJkAAJkAAJkEAgEKCABEKUOQPisyhTQHyGlgWTAAmQAAmQAAmYlAAFxKSBdbNbXILlJqh7JaOAKATI7CRAAiRAAiRAAgFHgAIScCFP1WEKiML4U0AUAmR2EiABEiABEiCBgCNAAQm4kFNA1Aw5BURNmiyLBEiABEiABEggEAhQQAIhyvfuI2dAFMafAqIQILOTAAmQAAmQAAkEHAEKSMCFnDMgaoacAqImTZZFAiRAAiRAAiQQCAQoIIEQZc6ABHaU2XsSIAESIAESIAESIAES0AkBLsHSSSDYDBIgARIgARIgARIgARIIBAIUkECIMvtIAiRAAiRAAiRAAiRAAjohQAHxcSDWbtyJck88gqic2REXnwBrUBBCQoJ9XCuL9yeB7bsOIm+unChSKNqfzdC07tgbt7Bt5wHUrVkBFosFt+/EIzQ0GMFWq6btYGUkoCaBxCQbduz+E5evxuK5qk8hc3iYmsUHTFk/bvkdTzxWFLmjcgRMn/3V0UD8/PEXa9arjAAFRBm/DHM/XqM95k0diqdKF8ervcai9KMP4Y2eLTPMxwTGJdCm9zj5Rbx1s+eM2wkPW/7HoeN4+bWR2PvTp0hMtKFc3a6IGdsXz1Yu42FJTH4vAp8uWo0C0blQp0YFZ5LBY2eic6sGKFakgCJwapWjqBE6y5xks6F2i9eRNXM4ChfIizd7t0b+fLl01kpjNKd8vW6Y8k4vVC5f0hgNNnArA/Hzx8DhCuimU0B8HP67BeTYybMID8+EfLkjfVwri/cngUD8ALhbQIIsQfjryAkUyJ8H2bNm9mcoTFV3n+FTUeLhwujRromzX+L+MnfyEFQoU0JRX9UqR1EjdJZ5556/0OPNKdi+cgas1iCdtc5YzaGAaBevQPz80Y4ua1KTAAVETZouyrpbQN6bvggPF3kAzepXw4p127Bp+15ky5oZK3/4BdF5IjHy9fb45bc/8OW365ErMgK9OjRDraplZanvTlsol28dPXEGW37dj2fKPY4hPVth1sKVWP/zbvkFpE+nF/FI0YK4FnsT3d+cjCPHzsi8jz/yoHx6J37n6oq9fgtdB32A4QPaouQjRWSSi5evodfQD/H+293wQL7cmPPlaiz65ifcuHlHtunNXq0RkT2LTLth225MnrkUR0/8g7KlimN4/7Yo/lDKE1lP2u3jUCguftf+w5j8yVf468hJ+SS6zUu1ZSxPnrmAMVPmYevOA/JJ6cXLsejX5aWAnQERy67EbN+wvq/i0WKFPR4DLXuMRrWnS2Pdxp04ffYSmtargkbPV8LEmUsgRKdR7Uro07EZckRk9XisKx4Efipg7cYdeGvCHIRlCkH+vLlQ7KECiMyRDSmzIrmRI3tWNK1fFS2aPIvf9h7C+zO+xP9OnsXz1Z5Cy6bPoVSJInIJ6MSPF+P7DTsQF5+IJx4vimF9XsXyNVtcluOnruqi2n/OXcKrvcfi/MWr8p74eIkieLt/W9zrHqCLRqvYCHHfLvRAXsTeuIltO/9AyxdqyWVocxevkUzE2BP/1r1dE7nk0vF5FpEtC75btw0lHi6EXh2bomKZR2Wr7haQy1ev481xn6BS+ZJo/3JdbP/9ICZ/slSO19xREWharyq6tG6IpSs34uTpCxjY7WVZxtkLV9BveAw+nfQGsmYJhyf3CRXRKC5KtLvrqw3l5/iff5/AmMGd8MmCFXIJ65VrN1C0cH707NAUdWqUd36GBgdbcfT4P/Jvu2alJ9G7UzMUzJ9H/v5+nz9iaaz43rFu02/IljUcLzWsIesW92jx/WDIuE9Qv1ZFLFj2AxITkzDgtZcRGhqCmfO+w9XYG/IzruurjRT3mQWQgCsCFBAfj4u7BaTn0Cko/WhRvNamET5b/D3e/+hLdGpZH5UrlMIXX/+An7bskssrXmxQDb/vO4SlKzZi8/Kp8gbffchkefMZ8FpzFCkYjREfzMXpsxfljVrIyLyla6XMvDu0K8RNR3ypKFuymLyZzFm0Wt7cv5o16p69FQIinliLD1lxifK+WrkJ330+Tn4QvDf9Swzq0UKK0oezlyF/vihMHd1H3sSadBgm2yG+NIobmXhyuHbRB8gcnsmjdvs4FIqKP3nmPOq1HiyFo1n9qjh+6hz2/HFEylbjdkMRmSO7ZBAaEoxhE2ajU8sGAS0gd497T8auCJLIKwS2W1vxpN+OASNnyLX3r3d7WX4pEnx7dWgqY+HNWFc0EPyUWXzpGzhqBgo9kEd+QRNfwMSXkhc6vCWXdD5WrDDy5YmE3Q7Ua/2G/NJWtWJprN2wE1+v2YyflkySkvH5ku8xbVw/+UR/w9bdeLrsY1Lk0pbj+HLjp+76vdo7cQmI+XQZfvp5l/yCKO6t4n7m6h4w6vUOfm+v2g0Qf7Obt++Vn0dCVEuVeAiXrsTKMVcwf26cOnMBvd+aihnj+6P6M084P886tKiHKhVKYc36X+XDAsdnjkNASpYogvZ9x8v9ce8N74akJBueqtNVfiY2qPU0jp86j+27/sCwvm0w4/Nv5Uyq+JxJ+aKdcg/etmI6hOh4cp9Qm4+S8kS7xdW62fPyc1QwXv/z73i4SAFE5ciOjb/skUK27bvp8iGf4/7Zr8uLMs2kj5egYtlHpSyIZYL3+/x5Y/TH8oGZSHvl2nWMj1nofDi2/8//oUX3d/B8tXJo3qgG9h48iulzl8uHRkI6RGwGjf4IK+elxIsXCahNgAKiNtE05d1PQH7euR+zPxgkc4in50IC/tj4mfxZzEpUatwTqxdMkE/VxU2obKli8kuuuKbM+gp/HzuN6eP6yZ/FLMTb783Blm9i5M/iA3Tfn0dx/ORZ7P/rmBQSUbZ4wvLZ4jXOVpZ+rKjcXPnD5t/Q7+1p+O37TxAeFipvai2b1pJPucQTG/FEa8SAdjKf2FDYd3iMvEF+vvR7rPpxO9Yuel/+Tjzdqta0D6aN64ualcp43G4fh8Pr4qfNWY7F3613CqGjoN/3HUbbPuNS3aQDcQr87iVY4ulaWgHxZOyKvAumDUOZksUk5ldeG4UGzz2Nts3ryJ/F0/3L165L2b7fWPc62DrN6M4SrBmffYOVP/6CiSN6yF6ILxHiS8ay2e/gx82/Y8UP2zB1TB8peOLBhuPiEqz0QRcPYMRDoMUzR8hf3useoNPhoqhZ4vNGzJiLmdy7r6PHz+Dg4RO4eOUa5n65Bp1bN0S75nWkgNz9eSaWGzds+6bzS7QQkLFDOssHW5E5s2HiiJ4ICbbi5q07qNigu5y9b/PS86k2+bsjIJ7cJxQBUTGz+Fv7eMJAVK1YylmqzZaMQ0dPSlm4cOkaYuZ8LcedmH1L+9m/bNVmLFi2DsvnjMH9Pn/EzLHg/v7w7nKWQ1xiZuvXXQdlXoeAHNgw99+DQ+Jk+iUzR8pVE+Jq2vEted8VDz14kYDaBCggahNNU567AiKm9sUXV4eAxCckomztLvj609HygyDtTUhM2conFv8KiDj5otOA92R+MSvRof+78qld+SdLQJQlpsjF78TSKvF0xXGJ34ubS0JCIio36S2XgQnhEV/6HE+aqr7QWz5BcdyEzp6/jOdeGSjbJqbk5Y3t3y+D4v+fbd5fipKcok8jTvdrt49Doah4sUlXXBOGvZaqnO/WbcXoyfOxc83Hzn+ngNxfQDIaA2kFpGP/Cahe6Un5RUdc4kv24f+dlpta7zfWFQVch5ndERCxpELMpKZdbimWyjxUOD+GjZ+FX3f/Kb/otXzhWTnLJJ7sU0DSBzytgNzrHqDDoaK4SWnv244vr/O/WicPlihcMB9W/7QdbV6sDTHrkVZAxJfomi/1w09LJ8k9j+KLrbhu34nDmi8myJlMx7Vw+U8Y++F8+aN46CCkR5wc6amA3O8+oRiIigWkvb/duh2HboMnSfl4tkoZROeJwqwvVmLRjOEQDwjTxkIsx5w0c6l86He/z59K5R6XEuh4iCm6IJZ7j5r0ufy8SisgQoJK1+roFB+RXiylrV/rabRqWktFAiyKBFIIUEB8PBLcF5C/0ab3WLcFRNygxBIgVwIyYfoiubb004lvyKUWQlRa9RjtLPteXZ40cwkO/HVM7lMRN0XxxEpc4imIWCb2erdX5M9in0rn19/Hhq+myCUd2347IJ+oiEvkq1C/GyaN7CGnltPePO/Xbh+HQlHxH3y8GJt/2SuXpN19HTh0TMqauKE7juikgNxfQDIaA2k/oMVYE8uJXAmIt2Nd0WDwU2YpIEULoUf7F5wtEKzEmnixlEpcEz9eguOnzsoTyO51iQcIO/b8hTFT5uPN3q3kUra05fipi7qqNq2A3OseoKtGq9SYtPdtx8z2nMmDnfs6ug2eiIplHnNbQMTeLTH2Tpw+h4XTh8ulf45L7E86dPQUPl+yFjv3/ImNyz7E7IWr5GfcR+/2l8lcLcG6ewbkfvcJlbCoUkza+5t4YCD+th0P/EQlIo07AnK/z5+Gzz0jV1GI7wg1Kj0p2y5m8Vav3y6lJK2AJCfbUerZDhQQVaLMQtwhQAFxh5KCNP4QELGOc8O2PfLGLZZgTP/sG+cSrPt1xTFtLtLMjxkml3w5blpiHfmUUb2QN3ek3HAtNgQu/WSk3EAobvxCOCqVKymn2MWTq43Lpsgz380iIKKfnQa+J/fINKpdGWcvXJabBsUytWca9pT7PVo1fU7e1MVT6EDfhH6/JVhqCoi3Y13Bn7TfsoqZI7EPTMiFEH2xEVg89S1fpgQ6t2qI27fj5CEVQoDFjGS9WhXlUk6xvLJc6Ufw6+6Dcn23eKoq8osHC4O6t0C9ZyumK8dxwITfOquDitMKyL3uAWKjrtmutPft6zdv45mGPeR+mNrVy8tx+Po7H8kT2dydAREzlmKGQ9xHxSUekMVev4lv127FK01qIiJbVnkAS8r+h2nYfeAIxL5JsXxQPEgTQrLkuw2p9oCYQUAc40qsKBCzRat+2i5nhNwRELEH5H6fP2IGI2uWMIwY0F5uKu8/YrqMn9gjRgEx21+t8fpDAfFxzMQXsfkxQ+XpUL2HfYhSjz4kN3h9JmYOdh7AJ++/Lluwa3/qGRCxJKpMmiVY4l0i4sx/caX9EieWVYhTq8STeCEHoi4xCyIusdZUnLjhWN51vy6LLy/itJNV8991rhEX0+ZDx8+WX2TEJZZoxYzpg6IPPiB//mjet/LJirjELID48uM4vUt8kLnbbh+HQnHxImZi/4Hj6ta2MXp3bIa7lxCItfViY7T4QhhI09YHDx9H864p7wFx7AFxjHtPx0CGMyCff4sjx05j0sieisa64gGhcQHiAcGAkdPl8jPxRU58+RJPT0dOnCv3dnVv20SePPT16s1ys6n4u3X8vX48YYDcuyVmSBx/p7Wrl8OoQR1kvFyVo3H3dFedWGsvvvA69oCIBt7rHqC7xitsUNq/WVGcOMRAzJKLS5zUJJb2imW27V+pm+7zTCz1rfFiP6xfOhl5c+eUS7Cmju4tD0wRpzS26jlaHqgwcmAHdBwwASdOn5flCkEW91SxsV28BLLf2zHYuG2P/J04FUq82PfuTej3FZC77hMKcaiaPe39Tcw8iL9rx+erWOK2futufPnR2/L7QtpYCAYiDo59l/f7/BH3DLFfU5xQKS4xEyI+n8XybLE3tEW3UXDsAXE1AyK+D4j9IyLOvEhAbQIUELWJ6qg8cZRkjohsco23Gpf4Yh0XlyA/UNJeYgpdnJIiTuIx89uvxTpZsRwhR/Ys8oQxxyW+7Ikjil2xUYM9y7g/AbXHup55i/GXPVsWuYlXXGJMiqebUTmzOx8a2O12OU5DQoLliUGOSzwxvXzlOqIis6f7O3VVjp45+Ktt97oH+Ks9WtYrZs7EbIg4DVHNS5Rps9mQMyJbumLFOBYPtsThKGa+xOenmOlxxSCjfmf0+SP25GTKFJLqXpBRmfw9CfiaAAXE14RZPgmQAAmQAAmQAAmQAAmQgJMABYSDgQRIgARIgARIgARIgARIQDMCFBDNULMiEiABEiABEiABEiABEiABCgjHAAmQAAmQAAmQAAmQAAmQgGYEKCCaoWZFJEACJEACJEACJEACJEACFBCOARIgARIgARIgARIgARIgAc0IUEA0Q82KSIAESIAESIAESIAESIAEKCAcAyRAAiRAAiRAAiRAAiRAApoRoIBohpoVkQAJkAAJkAAJkAAJkAAJUEA4BkiABEiABEiABEiABEiABDQjQAHRDDUrIgESIAESIAESIAESIAESoIBwDJAACZAACZAACZAACZAACWhGgAKiGWpWRAIkQAIkQAIkQAIkQAIkQAHhGCABEiABEiABEiABEiABEtCMAAVEM9SsiARIgARIgARIgARIgARIgALCMUACJEACfiBw8swFHDl2GtF5o/BoscKpWnD+4lX8cegYcubIhjIli3ndujtxCeg4YAJ6dWiKyuVLel2Oq4wfz/sO5y9dxYgB7VQtl4WRAAmQAAmYnwAFxPwxZg9JgAR0SOCLr3/EuKkLEJkjG35cMgmZQkOcrRwy7hOsWLcNFcs8ijmTB7vV+hmff4tFy3/Elm9inOlv3LyNpxv2wPvDu6N+rYpuleNuomHvzsaJ0+exYNowd7MwHQmQAAmQAAlIAhQQDgQSIAES8AMBh4CIqt8Z1BEvNqgmW3Hm3CXUbvG6/H9PBGT63OX48tv1FBA/xJJVkgAJkAAJeEaAAuIZL6YmARIgAVUIOASkdbPnsemXPVi14F0EW62YMH0Rdu07jGzZMiPZluycAbHZkrHg6x+wbOUmHD3xD4o/VADd2jZBnRrlseXXfRg6fhauXLvhXLLVuHYl1Hu2opwB6dmhKf534h9s+mUvSjxcCG1eqo3a1cs5+3HpSizem74Iv/z+B+LiE/FslTIY1L0FckVGONP8uOV3CMk5/L/TKFo4P+ITEpE7KgdnQFQZDSyEBEiABAKLAAUksOLN3pIACeiEgENA1n35gZzxEMuknin3GKo06Y1p4/pi0fKfkJRkcwrIpJlLsOib9Wj5wrMo/VhRfL9hB9as/xULZwxH1izhmDBtIbbuPIC3+rWRPRSi8fCDD0gBEVeDWk+jTKliUna2/Lofv6ycgexZMyMxyYYm7Yfi4uVYdGhRT6ad++Ua5I6KwLefjUNIsFUKTrfBk1C4QF4pL4mJSfhsyffInzcXhSkvnAAABrZJREFUBUQn44nNIAESIAEjEaCAGClabCsJkIBpCDgE5I+Nn8nZiwN/HUPdZyvi+/W/4pu5Y9Ft8ESngFy+eh3VmvbBgNdeRqeW9SWDJJsNzzTsKZduDenVSs5O3GsJ1rC+bdCqaS2ZT8ySVH2hNyaN7ClnT9Zu3IkBI6djxvj+qP7MEzLNxm170HPoFEwe1UvOlLzy2ihcu34Ta754D0FBFpmGe0BMMxTZERIgARLQnAAFRHPkrJAESIAEgLsF5O9jp/FCh7cklveGd5OzFV0HfeAUkN/2HkK7vuNRIDo3smXN7MT3598nUKPSk5g+rt99BSTtJvTHa7THoB4t0P7luhCb14W8OGZEROGxN26hUqOeculW11cb4olaneTMhxAdx0UB4SgmARIgARLwlgAFxFtyzEcCJEACCgjcLSCimN7DPsQfh49DLMkSe0HuFhCxZErMiAzt8yoKPZAnVa05IrKhVIkiXgvIlFlfYdYXK7Fr3SznSVxx8Ql4qk5XdGvbWM64lK/XDf27NkfnVg0oIApizqwkQAIkQAIpBCggHAkkQAIk4AcCaQXkWuxNxCUkIF/uSNmauwVEvDOkXus35Ds3Xm5cM1Vr7XY7LBYLZi9chZnzV2Dnmo+dv7/XMbx3z4AsX7MFb034FJ9NGYLyT5aQeXfs/gsd+r+LMYM7oWm9qlJAni77KGLG9nWWLZaNiXbxGF4/DB5WSQIkQAIGJ0ABMXgA2XwSIAFjEkgrIGl7cbeAiN/1GT4VP23ZhVGvd8BTpYtD7AvZvH0vgoKC0K/LS9h38Cha9hgtpeGx4g9KKYnOE+nyPSB3C8j1m7dRq/kAucFcvLBQ5IuZ87V8x8dPSyfJjerifSWivR1b1Ee1p0vLze5i1kS8JJECYszxx1aTAAmQgD8JUED8SZ91kwAJBCwBdwQk2W7H7A8GSUZiX4ZYLrXkuw1OZuIlhmJZljhuVxzTO2zCbPkCQ3GJ5VMdXqmHig26p3sRoRCQN3q2RLvmdWTavQePov+IaRBvYBdX3tw5MWVUL3nalrjE7Ezvt6Zi1/7D8mfx5nZrUBBCQoIpIAE7gtlxEiABEvCeAAXEe3bMSQIkQAKaExCnX128dA1hYaHIGZEtXf2378Th9p14ROXMLmcz3L3EUq5z/wpIvtw5XeYVgiLKzJMrh7vFMh0JkAAJkAAJpCNAAeGgIAESIAESIAESIAESIAES0IwABUQz1KyIBEiABEiABEiABEiABEiAAsIxQAIkQAIkQAIkQAIkQAIkoBkBCohmqFkRCZAACZAACZAACZAACZAABYRjgARIgARIgARIgARIgARIQDMCFBDNULMiEiABEiABEiABEiABEiABCgjHAAmQAAmQAAmQAAmQAAmQgGYEKCCaoWZFJEACJEACJEACJEACJEACFBCOARIgARIgARIgARIgARIgAc0IUEA0Q82KSIAESIAESIAESIAESIAEKCAcAyRAAiRAAiRAAiRAAiRAApoRoIBohpoVkQAJkAAJkAAJkAAJkAAJUEA4BkiABEiABEiABEiABEiABDQjQAHRDDUrIgESIAESIAESIAESIAESoIBwDJAACZAACZAACZAACZAACWhGgAKiGWpWRAIkQAIkQAIkQAIkQAIkQAHhGCABEiABEiABEiABEiABEtCMAAVEM9SsiARIgARIgARIgARIgARIgALCMUACJEACJEACJEACJEACJKAZAQqIZqhZEQmQAAmQAAmQAAmQAAmQAAWEY4AESIAESIAESIAESIAESEAzAhQQzVCzIhIgARIgARIgARIgARIgAQoIxwAJkAAJkAAJkAAJkAAJkIBmBCggmqFmRSRAAiRAAiRAAiRAAiRAAhQQjgESIAESIAESIAESIAESIAHNCFBANEPNikiABEiABEiABEiABEiABCggHAMkQAIkQAIkQAIkQAIkQAKaEaCAaIaaFZEACZAACZAACZAACZAACVBAOAZIgARIgARIgARIgARIgAQ0I0AB0Qw1KyIBEiABEiABEiABEiABEqCAcAyQAAmQAAmQAAmQAAmQAAloRoACohlqVkQCJEACJEACJEACJEACJEAB4RggARIgARIgARIgARIgARLQjAAFRDPUrIgESIAESIAESIAESIAESIACwjFAAiRAAiRAAiRAAiRAAiSgGQEKiGaoWREJkAAJkAAJkAAJkAAJkAAFhGOABEiABEiABEiABEiABEhAMwIUEM1QsyISIAESIAESIAESIAESIAEKCMcACZAACZAACZAACZAACZCAZgT+D2TIY6VJ5IdhAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "method_color_map = {\n", " 'up': '#648FFF',\n", " 'down': '#DC267F', \n", " 'combined': '#785EF0'\n", "}\n", "fig1 = go.Figure()\n", "order = full_df.groupby(['Method_Direction']).mean(numeric_only=True).sort_values('Rank').index.map(lambda x: x.split(':')[0]).unique()\n", "full_df['Method'] = pd.Categorical(full_df['Method'], order)\n", "full_df = full_df.sort_values(by=['Method'])\n", "\n", "for d in ['up', 'combined', 'down']:\n", " d_df = full_df[full_df['Direction'] == d]\n", " fig1.add_trace(\n", " go.Box(\n", " x=d_df['Method'],\n", " y=d_df['Rank'],\n", " name=d, \n", " marker_color=method_color_map[d]\n", " )\n", " )\n", "\n", "fig1.add_trace(\n", " go.Box(\n", " x=rand_df['Method'],\n", " y=rand_df['Rank'],\n", " name='random',\n", " marker_color='black'\n", " )\n", ")\n", "\n", "fig1.update_layout(\n", " width=800,\n", " boxmode='group',\n", " boxgap=0.1,\n", " xaxis={\n", " 'title': {'text': 'Method'},\n", " },\n", " yaxis={\n", " 'title': {'text': 'Gene Set Rank'}\n", " },\n", " legend_title_text=\"Direction\"\n", ")\n", "fig1.show(\"png\")\n", "fig1.write_image(f'/Users/maayanlab/Documents/manuscripts/dex-benchmark/revised_figures/4_{ko_gene}_1_300dpi.png', scale=(800/300))" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB5jURBvH/3t7vdJ7R5pKL1IEsQCiqIiCioqoqIiIBRVEEZFiBVQUCwp2xY4gCCpFFBT8KCo2pPdeDq7v7ve8OXPu7WV3s0n2Lrf3z/N8zye3M5PJbybJL29mJg6Px+MBNxIgARIgARIgARIgARKIUAIOCm+EtiwPiwRIgARIgARIgARIQCFA4WVHIAESIAESIAESIAESiGgCFN6Ibl4eHAmQAAmQAAmQAAmQAIWXfYAESIAESIAESIAESCCiCVB4I7p5eXAkQAIkQAIkQAIkQAIUXvYBEiABEiABEiABEiCBiCZA4Y3o5uXBkQAJkAAJkAAJkAAJUHjZB0iABEiABEiABEiABCKaAIU3opuXB0cCJEACJEACJEACJEDhZR8gARIgARIgARIgARKIaAIU3ohuXh4cCZAACZAACZAACZAAhZd9gARIgARIgARIgARIIKIJUHgjunl5cCRAAiRAAiRAAiRAAhRe9gESIAESIAESIAESIIGIJkDhjejm5cGRAAmQAAmQAAmQAAlQeNkHSIAESIAESIAESIAEIpoAhTeim5cHRwIkQAIkQAIkQAIkQOFlHyABEiABEiABEiABEohoAhTeiG5eHhwJkAAJkAAJkAAJkACFl32ABEiABEiABEiABEggoglQeCO6eXlwJEACJEACJEACJEACFF72ARIgARIgARIgARIggYgmQOGN6OblwZEACZAACZAACZAACVB42QdIgARIgARIgARIgAQimgCFN6KblwdHAiRAAiRAAiRAAiRA4WUfIAESIAESIAESIAESiGgCFN6Ibl4eHAmQAAmQAAmQAAmQAIWXfYAESIAESIAESIAESCCiCVB4I7p5eXAkQAIkQAIkQAIkQAIUXvYBEiABEiABEiABEiCBiCZA4Y3o5uXBkQAJkAAJkAAJkAAJUHjZB0iABEiABEiABEiABCKaAIU3opuXB0cCJEACJEACJEACJEDhZR8gARIgARIgARIgARKIaAIU3ohuXh4cCZAACZAACZAACZBAmRdel8sNt9uNmJhoQ73B7fbgyLETOHz0BNJSk1C5Qjk4nVGGymImcwTemPMVqlYuj97nneW3II/Hg1MZWXA6nUiIjzW3wzDn/nnDX1i/8R+cPJWJOjWroN9F3cK8x9CLz3O5lEzRTmfAzLm5edi59yAqVUhDanJiwLTSPvsOHkGt6pURFxsTMO2hI8eRkZmFmtUqmzrv5Dqw/+AReACljsH2Gzqp8OdIP5kB4ZGUmIDy5VIQEx24TcJfo8J7WLP+T/z65xZc3rsryqelFPfui21/8xavxImTGbi23wVh3+dnC1cgJycXV112Xtj3pXcHmVk5eP/zb9Cofi10PauF3my602Xn5EKuJ/HxsUGvO7oLtSChXIfEB5KTEiwojUWEg4DthPej+cvw6DNvKMd6y7V9cPctVxY67hlvfI4X3/gcX7w5GQ3r1lB+e2DCy/jy2x8LpRPx6XlOe9x4VW9FgvxtT8/4AG98+BVWzZ9R5EZ876MvYtGyNYWyThs/HD3Paaf8bexTs/DV0tXKDVfdKpRLwb23DVAu6oG2y296GH9v2RW0Tc9sUh9zXhkXNF1JJzDTBlbV/Yzug9Gp3Rl47Zn7/Ra5a+9B9Lrmftid68tvfYHpsz4tOA6Rv0XvP20VKs1y1HPviTG34pKenYPuSx4e+t/6qJLu45njNdNnZefgsalvYu6iHwp+b9ygFqY+egfq16leKM/e/Ydx7/gZ+OX3zQV/P79rGzz+4K1ISowvlPandX/gvvEzcORYesHfh91wGYYN7guHwxG07pJA6r9gyU947d35Rc5Fubb07X02+lzQGVUqldNVXkklEsF6YfZnkL7tvQlnefi79bpLQqqayP+zMz9Gg7rVg17HQil42qsf4bX3vsTnsycqMhTOTb0eJSbE47vPni/ycLt5225cOvghpQpyj5F7TSjbD2t+w4//+x3XXnEBqlWuUCjrVbeNx5Yde7Fm4cuhFGko7UXXjYI86Kz4fLqh/OHIJA9d5/S7C30vPBuTRg8JuAvv+72aUO6hDevVxMUXdMSF3TsgxecBWe67ny74Di8/ORJdz2oejkPwW2agdj+v/z3Yf/AoVi94ucj1qlgryZ35JWA74f3wi6UYP/XNggrLxapi+dSCf78w6zO89NZczJ09CafVr6n8/d5HZ2DRstXo06MT0lKSlAjeqv9tVDqfiML7Lz0COYnUTW6ScrFa99vfeO+zb5U/awnv8lUb8NfmHXjutU+Ucm4YcCHO7nAm6tSsquQRwRKZ7nNBJ1SrUhGr1/2Br7/7WflNpEvky9/2/OufKPVTt3+27sZvf21Fi9MbooGXCNSsVkm5idt9C7UNwnE8eoRXLsZywaxXuxpG3XFNOKphukyJkLS78FbUrVUVz08YofTzY8dPolxasumyAxWgnnuTH7wFl/Xq4jfp5u17FCldvPxnfPfjBjRrVNev8KoPjd07t8IFXdti2859ivSIiHwzZ4ryVkQ2EeMeV41UBPb6K3uiScPaWPHTr8p5fVbrZpg1bVRBff7YtB1X3jJOKePW6/ogLTUZn8xfrpw/I26+ArddH1zwZH/DH3oOq37eqJTT98IuioTJ3//avBOff/W9sj+th+6wNkKIha/46RcMHTVVySUPB21bNMHhI8fx5z87IDdn2TYuyw8g6N0ketaqxxBIm704+W692YKmK07hVa9HUqlxIwdjwCXdC9VP7jHS32XT22e8C5jx5ly8OPszJRghD8/eG4VXv/Cq15z2rZqiUf2aSmRc7ovyNkA2rfv32x8vxsqfN2L4jZfjjCb1gvY7KxMEaveHnnhNuX5NG38H4uPs/fbQSialqSzbCm+v7h2Um91NV1+EkUMHFDANJLwL331KefUrW26eC7fc97Ry4vhGrER2bx75VKF20hJeSXD0eDrOvuxOdGl/Jl59+r5CeeR10kXndyz0+lONQPfv0x2P3jdYd19Qn3QnjrrZ0qiK7gr4JJTol95ImWRVbzB628BovQLl0yO8evcb6vHrLVdPuq079qLPoAdx+6DLMPymy/1msbqOeoVXbvRy4Vc3f8KrRnok0vjhK48WDBtSz5EJD9xUMEzjmxX/w11jpyuvgceMuE4pWiKNcp7KOTz/rccLIsJPvPAe5Kbn/bZF9tX72lGIj4vBsk+eCzq84dV35ikPsvKA+dxjdxaJ4h4/cQqPv/CuEr3zfcukpw2LI428yr7w2gcUQVj47pMFD+LqvuXB4MkX38cbz47WrI6//hNJwisPMxLs+PKdJwpef4uUdO17p/KgI2/nAgmvP0bhEF6957N3OjtFeNV6hRLh9XfNkT4tfVccQM7RWVNHWTYETS9nrZMmULsHO+fN7DdY2fxdHwHbCu/LT96Lx6e/i+279mPpx88W3JD0Cq8cvrzqGz35Vdx8zUXKMAN1kwjanv2HlH9OmPaWckM1IrxaiH/9Ywuuvv2xoK/WffPqEV6JrD332sdY9+sm5Umy9ZmNcPsNlykyrm4i4RJ5G3v39fnsVq7D7n2HcEP/C5XXLPLq88qLz8H23fsUPjKsolvHlrhv6ADUqFYZr703H18v/xmyL7nQPHLPICWCF2zTEt5AbSBDSWSMqrSDHIs8yfc4p50yBMU7oi8XPbn43XFjX7w4+3NIREu2C8/tgAeGXV3odZeW8Eq0Tl7Pynjd8ffdqDx5jxg7HS1Pb4ihgy5Vytr41zaFS/8+5yis5PW7yIK81h459Cqc06llocM/ePgYJFoldVHboVGDWth34AhE4mQMqGwSZXv1nflYv3ET0k9mKhHbzu3OwMB+RV+DqjuQ+j465Q0lgipMGvw7bOeuIVeg6Wl1IH1XhPHb7/+ntK+0jURjr+3XA1FR/73KV7k9NfY2pZ2FdfqpDIy9exAqV9R+Ra9XeOWY5UFQtktvGOM3wvvJl9/hkadn4b6hV+HGq3sXMJR6y41aXkfKa0nZRk16BfO/XoX3Z4xV+p13f374ydeVh155+JWtfe+hiqhs+Pb1QmP45FyXY31vxlilff1tBw4dw7lX5kcuJcpcvWpFv2nlWL3fDuk5B0Pps7LjZSvX462PFuHXP7cq9ejYphnuu/1qpb8E2mQIyAVXjVT6qQzx0rPJmOu3P1qsDMWSiLj0sW4dWyjSJ6+Ohevdj7ygRIdFCNu1bKIUmxAfh6mPDlP++9sVa/H+3G/x1z87lH/Xq11diS5ffdl5ASNbaoRX2vybFT8r54+cF3L9evju65XzRup3zyMvIC4uFk89PLRQn5Z9TXrubezae0gZEhNoDL56PZJ+M+XlD/HsY8PRo1v+UDT1YUf9zVd4j6efwguzPlUYSF+VBzYZoibnmMzP+Hj+csx8d74yhET6arnU/DcvcvxyrVAjvB+8/EjQa5bkk2v/x/Py31BIe0gZdw25sshr8d//3gZ5MyhvPqRt5PyR/5aHPD1DGsJxzZX6y3DCtz5cpNRf3nhKtFbOZT1DGgJdc+TB644xzyrtcMeNl0OGLMkm57gMRRoz4lrUrpEf4Ap2vQvWpuq5I/MlXnl7nvKGWNpezsGzOzTH1X3Pw/c//Rqw3YWv3D+kr6lbqNdrPfc5Pec502gTsK3wypCAYydO4r7HXsKg/r0KXj+HIrwfzluG8VPeKBLh9UZx50PPYckP6ywTXrkYjntmtnKBlGit3i2Y8Iqw3HDX40pxbZo3RlJinHKxk01eO8rrR9nUm4pciL3HQoqIieiorz8lrVxc5QIuJ7bc1OWGJ/8tf5dNLuhysf9s1sSgh+FPeP21gURYsrJz0fKMhkhNTsLGv7Yq+5PXg+/OeLhAZOTmIRdSdZPfZXyc3JhlEpccl7r5Cq9ESgfcNl5J+/b0MQo3dbiA3KBluIBs3q+F5d9y0U5OTFCkXzbvqLXI0sXXj1bKFDZ1a1VT5FgdP6mmVaO0kl+GtshELZmAJvIeaIysHOvIR2co5UmbVP13fOC4e29A00Z1cd0dExUesu8mp9VRHn4kre/NReUmvLz5eUdKfRtVr/B65xPm/iK8aiT49SkPoGPb0wuySaTjzHNvVG4mC955Uvn7dcMnYd1vm7B28cxCb0zU4QsDLz8fD911vTLkoG2vW5WHvXdeyB+DqW7vfvoNJj//jiJm8obI37bk+7W48+HnoZYZtHP/m0DvORhKn539wUI88/IcZQ+9urfHjt0HlP4km/eDvlYdheOFAx9Q2v+t58egbYvGAQ9F0g978FllGIoIk5wDP6z+VXlok34iQ7+kX19/56SCMc3qw65MxJFIsYiMPJxI/k7tTlcmTP3vl01KvsUfPAMZguVvU69N6u/ShyUaqD7wSt+UycPqw4/vsDA5H+UB67wurTF90l0Bj1W9HsmQOGEkw8Rk+IFMeJI3dlL3Ky46B8MenFYowiuTj/vfOq5gOJw8OKnzQ9S3jfJwIsKr1lsdY3rLtRcr/S6U9n/qxffx5keLlHO9S4fm2Lp9r3K+yrnxyWsTCqR+9bo/ceM9TyjHrEq29EfhLnn1CG84rrnCQQIK6nXO7XJDxtfLZlZ4pYydew4o7ec9rEl1AJk3oPbPQNe71JSkoG0q+/Jue3mIlDaQa7a0szy0y70yULur1zB1CJG8ZQ71eq126kD3Ob3XK6YrSsDWwtuhdTPI5C650H370VTl9aJe4ZUL6bV3TFRuBss/fa4g6uaLwErhlRmaIqVrf/27kITq6XiBhFeiHv1uGqtw+OKNScqAftlUqfKWUvWmIjek+2+/ShGNuNhYRSJkhrQIr5zMj4+5tWD8kzxULFzykyJRMn5TLiJycxw5XsZGr8GyT571GxVUj01LeAO1gdzUJSqqzu4XdneNfV55+PAen61eyCQaO2RgH+UGIBcmuQjKxf6Xb2cVvL72Fl6Jfl07fKJy45Lxn3LBlC2Q8AqXCaNuLogOqq/evaOLYx6fqUSA7x92NQYPuLCgaSUKKdF1VXhlwplMPHvs/ptwxcX5qyvIMcqre4lktWneyG+3kBueHLd3VEMSqw9TAy49V4nUSkRXjuf20VOVtxTekU2VmxyTvJI/s2kDRRarVS6PWD8rH1gtvOo4SRnO4DvWTr35qhN7ZCKhnKu+403VG57IoET1ZPWG8/vfqzm+9IvFP+DByTOVaOE1fc/3y/f19xdg6isfKg9Lele+COUc1Ntn1QmUcr6J3KljtKUfSX+6oX8vPBBknLn6ilUOViJrHVo1RZOGddC8WYMiwzTk9bCcpzKjf/Qd1yj9QI5r/JQ3lUlAIpEik4GGNFwzbILyIO394CR9cM4XS5Q3DYFWX1CvTZJOItgiaiIF9457QTnvnxo7FBef31G5fl5/52RFHtWoshyfOsFYhpZ5v9XSamj1evTzV69i5rvzlKjdm889qETg5Bx+e/pDymQvX+GVN34fzF2iXAcv7dlZGdYl1xkZMy7BAPVeEmxIg5zDwa5Z6sQ5af/Z00YVvK2Svil9VL3uePc972OXv198Xf7Dtx7htfqaq75hkHaUhyXvQImcz1YIr9yHOlx0e6E3OoGEV+t6J9FfPW0qgSq5xsrbNHWip1yz5y76XrlPyUTeQO3uK7xGrtfB+owel2Aa/wRsLbwSGZNJYPKKTY3GBBJeiVikJCXi8NHjBdFPeSUfaMkWK4VXPRmk3q8+dV+R13GBOmIg4ZVXnVcPHQ8RnYfvur5QMSLYEhlbt3imcgNTbyq+r4YlkxrJ9GWiDv3wFQD1xiuiIcIRaFNvMKG0gVxMtu7Yo7yilKXdZPiFvC71jlj7mwCiTobylnFVeCWCqj7s+N4cAwmvLxcZXtDv5rEFfU/q2/y8G5ULu0QmvZefm/z8u3j3068LhFftCzKB6vYb+oa0RJQ/4b31/meU13u+D3A/rv0dN9/7VKGhO6p0qf1Cz0XQauFV28j7AUathwxpEIFQH1hkmIJsvjPb1eEHaoRHhuDIQ7CvDEleVei8b1hax61KjQyb8l42SSaprtmQP1lG3dq3bKq8Yg7lHNTbZ2V1GJE4ET2Zja5uJzMy0fmSO5Q3EvJmItAmDzHTX/9UWWnGdxOZl1ek6ioCt4+epkR3ZbWP6lX+G8Yh/Uf6lvqAFUh4RURFSGc8fk+RoT7B+pi/SWsbft+MgcMmKNc3eZMhkiNvUbwFU87bbpePUCRZHiq9h+8EE14RWxnCIkO3du89qAzPkGivtLe38Hqf3zLm14H/hgjNePNz5QF29rTR6NC6aUDx0dv+MnlTmHgPt5BjkdfqZ118e8GbE/U6pDV0JdQxvFZec9///FtMfPbtQm9gpf5WjOH1blNVJNVgQiDh9b3e6W3TNi0aoeX5NyvXdu/x3r59KxThDfV6rbWyh9Z9Lth5xt9LsfBKh71iyFjlFdvXHzyDTxes8LtKg+9hyhgfGXcVaLNKeFVZkBNGIm3e41D1dMBAwrvg259w/4SXAhYjbGpUq1QgvFpL//gTXomuCAeZZCeT7dRNfdjQM5HOe1a0d0X9tYFEOmW4ifeyUmo+NdIk//Z381Cjh+pxS1oRXolSyyb95bkJdyorA3hvoQjv3gNHcMGAe3Fln3OU8b/qv2Wpp2ceub1Qub7Cq4qZJMofb9dCGZt5Sc8uQSdf+BNeWfZGZMQ3mqPeYLyHaRiZKW618KoRE+9Xjyo0dQkfNaLr+281nRoFVY9tz75D6HH1fcrreHVIippWfXCTSW+B1kBVX8P6PuCpkTXvhlXH/4dyDurts94rBWid3DK0ZslH0/RcPpRIv8wf2LR1l/ImR1jIJoKoTuJTo+j+ClT7eSDhVcdlSxnyyldWhTi3S2uc27lV0Emu/oRXxleK4HuP6VZlSuZeSBv817bBr+lSN+8Ir7wVkhn06sobqmD6Cq96fgcC/uRDtymrAQWL8GrJi+81S11eS2uYkfpAKOeHeh32nYsi9QxFeK2+5qrXPN+HH6uFV94GyX1ClVl/wqvFXG+btm7eCD2vvk95wyAPoP62UITXiuu11n1O1wWBiTQJ2D7CK7VWhUwiABXLpfoVXvUJUKJg8nQloiFP8t7LfPlSsEJ45XWJRI1EdmWcW6BJMP76YSDhVX+TVyrtWuRPIvHdLjr/LOV4Ay394094ZdKMTA7wFV51rGMowqunDWQpqCH3Pa3UV1YhaNGsgfLhAJmIJREDPcKrRul8hdebi7xSk7p7rzYRivCq0UVVBHbs3q+sBCCRopeeuCeg8MqPImeyZrRMIlTXahYBkfGWvmvQehfmT3glCpqSnFBEgrSEwQ7CKxNs5FWyOn7a+xjlWISFuraw+qrce4iKpFcfHOQtjUTgMzKz0b73bUWWKpO06nkoDyOBPj6irgghy5+NHj6woFqynKH8T7Zf/tisrBqhSkYo56A/9r59Vl0r9s6b+mkOuZLzQ85rI5ssYyfnmLzGltf3MoRGnewnD29amyzVJ5PUgq3SIOevPDSoYzWlLBlz+M6LDwd8k+Hv2iRLUXXqM6zQeaX2aZH+rz+YogwVkzdZK+e9qCw9GWzzFV41SirlyVhjeUXtK7zqGGE5lv4+y5ip+5PorixLaUR4/bW/1thndZ3235bOVoI8MvlT6zqsV3jDcc1Vx1r7rhBipfCqK2rIcB11tZFQhFdvm0qfl3WZfeeF+PazUITXiuu11n0uWN/n7/4JlArhVRe4l4u3vFqXcaVa6/B6Ty6SZYtk+SKR0Dkvj/O7hqlZ4VVn/MrrptemPGB4kfpAwqu+spZZqvLaMdBmF+GVOvprAxlTJRM/fBcOV4dQmBFekYTXp9yPp2Z8oNwghwy8GPfc2r8AmRnhVSdMyT5++vKlQq9VfSO83m0k/VeiDzJBSY5RhjnIzHB/mz/hVaXQd2KX79ALKdcOwjtn7hI8Nu2tImNq1Sit90QUVVA+fX2CsgavuqmTpLxn0qvDH3zbQI0oB5vAJRPDel/7gLILdW6Ab1tI35FXqarwhnIO6hVedYy476Q+vTcsWbZNHub8vd5XP16irkOrvhpes1AmncX53Y0qvN4RV63EMv5WxvPKNUd4BRtb6+/apPZf78nJsj+1PSXKK9F3dciDHj6+wit5ZM31+rWrFayP7iu8gSZE+hMfrRVB9La/Os5fxharq2HIfqRdO/YZhsoV05ShU2qgQmuojl7hDcc1V21P3wdaq4RXrpsyll0i83cM7luwHn0owqu3TdX7gtZkWO+2V4VXq919x/Bacb2m8Oo52/WnKRXCK4fjO5M+mPBKHvWVkTwdznz6Ps3PBxsVXpkw8Pjz7ypRJTlJXph0l6kPAwQSXnUtYBEtef3l/eU4GfKxbOU6nHd2G6XV7SS8/tpAnST3+tQH0LFN/ux94SkzlmWmvRnhVb+0JhGugXdMUMYBShRPonmymRFeya9e1LxXApAJY3Jhltfv6kOX9NfmTRsU6hPqigPBZpn7E15ZXmnWBwuU4RUSdVY3WZlAuHmv/mAH4VVfJ8r58cZzowsmKKqTxsbeM0hZykk2dciA9wOK3PBkQp6sRiIrhajDVdTXfN5jcCUi2Of60crKHxIFDPZZXXV2vIyTffqRoUW+luUrvKGcg3qFR30TJXxmPzu6UJ2VZdc2bg748RoZwiBvREbfOVC5BnlvsnrCTfc+pYjoBy89okxiUyPuWq/G5SFEGKqz3mV4kPcqGmrZ0k6yfKA3X3V1jGBDyPxdm9T29F5XWfanjptW9601NMbfrU5LeH3T+gqv/K5Kiu/4bvlNWEp0V4ariTzLEmlaK4LobX91/zJEQoZKqJu8Ebpn3AsF0UaZaCev2yWoIgzUSafy9743PqxrWbJwXHPVh1HfBxH1uMxMWpPIrrxFkMCIRNxnPztKeSMoWyjCG0qbqlF1Wf3F+3ySSdIy9ltWxwjU7r7Ca8X1msKrX2b1pCw1wis3v4F3TCxYakuP8Hpf9NXX0gJFbsRLf1in8Hnnk8WKFEkUUE4oiS6py/sE+tLa2l83Kcv3yCazjmUihO8m662qnz8O1hjBliWTCVESRZQ6ypqmsvyPrNKwfNV65bWvOhbSbsKr1QZq5E+i75f0kJnQUFYvUD+1bIXwCm+5iV81dLwy/uvpsbcrr4fNCq/I7eC785cHkgcPWUfU+9PSqvDKDUb6j3zhSSTiVEYmPl/0g9J/g0X0/AmvXHhl4o5sEvFoWK8Gflz7h/LFKOlnn86aUGg5t1A/b6qO4ZULu0TCfLezO7RQGMokI1m7WDa56cvQBJmYJ5usWal+/EX+rT5QiuTLWE+JrsqNTPqxDEdRVyaQdul5df6X1mR1AlnBQ17DypJQvlEXlU/Bl9ZSkvDZV98rbL0jQYHOOWmzQSMeV175Szkydq9xw9pKX5Q6ygQ4WeHDWw71noN6hcebj7SfXKOSEhPw5z/blXVyZVyh7zhl72NS1/yWvwkjkdrqVSpg49/bsHLNbwpLGQYlD0KyyWQoiWzL32VYjrSHRHPVMb/eY59lOITwl1e8pzeuiz37DiurBqhDUeSzyzJUTKRL3lzIg4a82lbXoNZir16bJAAhn32XsbXq1/TkHJHVPHyj1bI6grRRsMib7/6MCq/06wG35X8uWx7GzmxaH7LutiwBJg8oqnSr13+5Bsja4bLc2RmN6ykPKHrb3/ueJu10TseWykOzusyX91AHdfKScJBJlNJHZWUN2fQsSxaOa64cs8xxkP4kQ4jk3inLeMkQOdlCEV71S2vywReJEKvDZbTmxIQqvHrb1PvaLm9T5eHmry07MWfuUmUNYLnvBmp3X+G14npN4Q1mTqH9bj/h/XftXC0pUMchySF6L8+lPr3KeEB1aRQVg5w88uQmJ6Ws4ymrPaivJ7VQeb9Wk9Uh1E8Fq2nVFQvUCFAg3ME+L+ydV13CxN9nXeXiKDfBp1/6oNAnieVmfdVl5yrrBMomF0sRCq2Z8WpESWZCy1O5usTI1ZgAACAASURBVKlP5N5LaMlv6thpPWN4Q2mDAZd2x7inZxdMIpF9iWTJhxVEul6YfBfO7dxaqZ6/m4eIljxtf/PhVOUmL5u/D0/IhUgER151n964nvLZXlmEXl0g3B8XdQyvbwRDhO/dT75WJgjVrllFqatE4+ShRR1jKJNs5GMW6vq8Uj9pq7tvuSLoREr1Ai1jO9WPY6htJQ8Foya+XPBwIH+XV88TRw0pJBuGIrz/nnv++rQqf+qreK100yeOKHjbIL+LyMqEIRFIdZPIoaRTl9dT/y5LkI14+PlCxyZi9uTDtynrGHtv0mZyfno/bEh0WBbsDzaDXy1H3ip8+uV3yhJQ3u0kv0s0uW/vrooIqxKn9xwMpc/KK9fZcxZi1vsLCx2LMJK2v7Sn/088i8DKdWP+N6sK1u5Vj00dHy/SJksSqpv06SmvzFHW0/XeZHiJLF+nfvRDlsyS8ecyfEztu7KChkSt5K2WN3epqyyTF+hT6t7XJpF7dY1rtf9OGn2L5kRfNSqtPrD665u+f1evR/9b9Krfj2Go1z05bvmEtLrJA9UT099TIrrem/SFUcMHFtRTRF9YqH1HnQMRSvuL4I2f+kYBZ9mf3MOeGTcMzZv+98liSSdRX+9x03I+SttrTWT15SF9PRzXXBmOIm9h5OFQ7SfyuW+5D+lZi15dp92738pQDpmALbzlwUg+mOS9qet7ew9/Cna909umcl2Re4sEwdRNIszeb1H8tbuv8Ep+s9drrfuc3nOA6YoSsJ3wspGCE5BXjwcOHVXWvJTXa6F8Ajh46cWXQm6+Ej2pWCG1yCvl4quFNXvyd8GVtpKbgVy0q1QqH/RVu97ayIOcsKtZvXIRGdRbRnGmE/HdvmufIo+BooBSJxk+IF+tkwiL783Ou84ioHv2H1bkq16tappDlvQeo9RPXlvKUnPy9sTfWsVqeVafg3Is0qYiNhI1VD9moLf+Is7SH2TSnSxDpkbO/eUXAZJ1VGVIlOxPvkCotcmEshPpp1BV+m5MtJJE6irRK/mfRBcrlk/T/ZCh7kM992WCr/eX7LzrIHWUV/nyFuWHudODtoleVnrTCVPpXwlxsahcqVyhr/qpZQgLEV75MEegNYiD7VMeXuSBT1hWqaT9JUQpQ7jJ+SETDL0fZIKV78vdymuu9CGpu9vtVs5Z7+Ua9daruNLpaVOpi5zfR46eQMUKaZrX11DbvbRdr4urPYp7PxTe4ibO/ZVqAnJh/2LRD2jXqilqVK2orBow96vvla8l+c76L9UHysqTQAkTUMey3j7oMmU1F24kQAIkYIYAhdcMPeYtcwR8J9KoAOR17pRHhiEtNfiSSWUOGg+YBAwQUCeQfTNniqGlHg3skllIgAQimACFN4Ibl4dmPQGZhCfSu2XHHuXTpPIas0HdGgWfI7Z+jyyRBMoeATnPZHxqakpSkY/HlD0aPGISIAErCFB4raDIMkiABEiABEiABEiABGxLgMJr26ZhxUiABEiABEiABEiABKwgQOG1giLLIAESIAESIAESIAESsC0BCq9tm4YVIwESIAESIAESIAESsIIAhdcKiiyDBEiABEiABEiABEjAtgQovLZtGlaMBEiABEiABEiABEjACgIUXisosgwSIAESIAESIAESIAHbEqDw2rZpWDESIAESIAESIAESIAErCFB4raDIMkiABEiABEiABEiABGxLgMJr26ZhxUiABEiABEiABEiABKwgQOG1giLLIAESIAESIAESIAESsC0BCq9tm4YVIwESIAESIAESIAESsIIAhdcKiiyDBEiABEiABEiABEjAtgQovLZtGlaMBEiABEiABEiABEjACgIUXisosgwSIAESIAESIAESIAHbEqDw2rZpWDESIAESIAESIAESIAErCFB4raDIMkiABEiABEiABEiABGxLgMJr26ZhxUiABEiABEiABEiABKwgQOG1giLLIAESIAESIAESIAESsC0BCq9tm4YVIwESIAESIAESIAESsIIAhdcKiiyDBEiABEiABEiABEjAtgQovLZtGlaMBEiABEiABEiABEjACgIUXisosgwSIAESIAESIAESIAHbEqDw2rZpWDESIAESIAESIAESIAErCFB4raDIMkiABEiABEiABEiABGxLgMJr26ZhxUiABEiABEiABEiABKwgQOG1giLLIAESIAESIAESIAESsC0BCq9tm4YVIwESIAESIAESIAESsIIAhdcKiiyDBEiABEiABEiABEjAtgQovLZtGlaMBEiABEiABEiABEjACgIUXisosgwSIAESIAESIAESIAHbEqDw2rZpWDESIAESIAESIAESIAErCFB4raDIMkiABEiABEiABEiABGxLgMJr26ZhxUiABEiABEiABEiABKwgQOG1giLLIAESIAESIAESIAESsC0BCq9tm4YVIwESIAESIAESIAESsIIAhdcKiiyDBEiABEiABEiABEjAtgQovLZtGlaMBEiABEiABEiABEjACgIUXisosgwSIAESIAESIAESIAHbEqDw2rZpWDESIAESIAESIAESIAErCFB4raDIMkiABEiABEiABEiABGxLgMJr26ZhxUiABEiABEiABEiABKwgQOG1giLLIAESIAESIAESIAESsC0BCq9tm4YVIwESIAESIAESIAESsIIAhdcKiiyDBEiABEiABEiABEjAtgQovLZtGlaMBEiABEiABEiABEjACgIUXpMU9xzONFkCs5MACZAACZAACZBAYAI1KiYQkQkCFF4T8CQrhdckQGYnARIgARIgARIISoDCGxRRwAQUXnP8KLwm+TE7CZAACZAACZBAcAIU3uCMAqWg8JrjR+E1yY/ZSYAESIAESIAEghOg8AZnROE1xyhgbg5pCCNcFk0CJEACJEACJKAQoPCa6wiM8JrjxwivSX7MTgIkQAIkQAIkEJwAhTc4I0Z4zTFihDeM/Fg0CZAACZAACZBAcAIU3uCMKLzmGFF4w8iPRZMACZAACZAACQQnQOENzojCa44RhTeM/Fg0CZAACZAACZBAcAIU3uCMKLzmGFF4w8iPRZMACZAACZAACQQnQOENzojCa44RhTeM/Fg0CZAACZAACZBAcAIU3uCMKLzmGFF4w8iPRZMACZAACdiHQMrXk/1WJr3HGPtUtAzWhMJrrtG5LJk5flyWzCQ/ZicBEiABErAPger3J/qtzN6nM+xT0TJYEwqvuUan8JrjR+E1yY/ZSYAESIAE7EMgedFEpTKxW1YgbssKZDfoipwGXZW/nez1sH0qWgZrQuE11+gUXnP8KLwm+TE7CZAACZCA/QiI+KZ8MxnpF4yh6NqkeSi85hqCwmuOH4XXJD9mJwESIAESsB+B4hLenB+ikftjjCaAmI65iO2SZzmc2Yvj4NAotWp5N3q3z7V8f1YVSOE1R5LCa44fhdckP2YnARIgARKwH4FIFt5xbydoAq9X1Y0be2bbrzH+rRGF11zTUHjN8aPwmuTH7CRAAiRAAvYjUFzC633kp6bki2jSyMywAtm6P0opf+GaWOw/6sCF7XJRrYIbCTEeVKvgCeu+zRRO4TVDD6DwmuNH4TXJj9lJgARIwAiB6Iw/kfbPXZpZc5Nb40SDJ4wUyzz/Eohk4VUbWYY2bNsfhcE9s1G/qtv2bU/hNddEFF5z/Ci8JvkxOwmQAAkYIRCbvhqVNnTXzJqd1h2Hmy8wUizzUHht2wcovOaahsJrjh+F1yQ/ZicBEiABIwQcrnTEnlyvZE3d8gBiTm3AiQZPIjepFdwx5ZCb2NxIscxD4bVtH6DwmmsaCq85fhRek/yYnQRIgATMEqj0a2/EHl+OQ80XICdNO+prdh9lLT+HNNivxSm85tqEwmuOH4XXJD9mJwESIAGzBCi8ZgkWzU/htZ6p2RIpvOYIUnjN8aPwmuTH7CRAAiRglgCF1yxBCi8nrVnfh+xWIoXXZIvsORze5VNMVo/ZSYAESCDiCVB4rW9iRnitZ2q2REZ4zRGk8JrjxwivSX7MTgIkQAJmCVB4zRJkhJcRXuv7kN1KpPCabBFGeE0CZHYSIAESMEmAwmsSoEZ2RnitZ2q2REZ4zRGk8JrjxwivSX7MTgIkQAJmCVB4zRJkhJcRXuv7kN1KpPCabBFGeE0CZHYSIAESMEmAwmsSICO8/NKa9V3IdiVSeE02CYXXJEBmJwESIAGTBCi8JgFSeCm81nch25VI4TXZJBRekwCZnQRIgARMEqDwmgQYwcK79JcYLNsQbRjQ4J7ZtpFhjuE13IxKRgqvOX4cw2uSH7OTAAmQgB4CFX6/AvFHFupJqpnmUIslyEntaDh/WcsYKZPW7CC8N17XH4u/+lKzC73/8Tx0636+ru5F4dWFyW8iCq85fhRek/yYnQRIgAT0EKDw6qFkXZpIE9561dyoV9WtG9D6f5w4dsoBKyK8FF7d2MOakMJrEi+HNJgEyOwkQAIkoIOAKryZlfojL6GRjhz5SRL3vwlnzm4wwqsbmZKQwmud8Krk1639GX16dkOr1m3x5dcrQmsQAIzwhoysUAYKrzl+jPCa5MfsJEACJKCHAIVXDyXr0kSa8MbHAvGxHt2A0jMdcLlgSYSXwqsbe1gTUnhN4mWE1yRAZieBMkAgeeeTSN0+XvNIT9R9FCdrP1DqKaTsegqxR77VPI70euOQk9rZ1DFSeE3hCzlzpAlvyAD+zWDFkAYKr1H61uaj8JrkSeE1CZDZSaAMECgLwlvurxuReHCOZmseaTYHWRUvMdXSFF5T+ELOHGnCW7W8B9Ur6B/Du2m3E6eyGOENuePYOAOF12TjUHhNAmR2EihjBGp8n6gc8Z6zMyLqyKMz/oIz9wCc2TtR7u8hcMXVwbHGM5VjzE06He7oiqaOl8JrCp9mZufR7Yg+ukPzt/g1byPx53eQ0e46ZLW/XjNNXvk6cJWva1nFTk1JUMpKGplpWZnqKg0lOWlNPRiO4bWsWQ0VROE1hO2/TBRekwCZnQTKGIFIFV61GaMz/kSVtW2Ql9AEB9qus6x17SC8rrkb4D54QvOYoq9sC0e5/IcZo9sfa9xIP/pf7l2b3Ni9WTsqWbNhFGo1iiq0qw49C/87WD3UKG6wdP5+T79gDE72ejik7KrUhpTJK3GoMkzhNUo68vJReE22KYXXJEBmJ4EyRoDCa6zB7SC82Te+Afdf+zUPIO7dIYiqby6K/ckLudizRf/EKt+K3Dk1NiS4qvC649PgTkjTnTcq8ziiso6DwqsbmZKQEd7QeFmdmsJrkiiF1yRAZieBMkaAwmuswe0gvGqE17PtCFxL/oSjbgU4z2+qHJAVEV5VeCvVAGLj9XPasyU/rVHhza7fFTkNu+reYezmFYjbusKU8MZ0zNW9P0mY+2OMkp4R3pCwMbEXAQqvye5A4TUJkNlJoIwRoPAaa3A7CK9ac9eyv5Ez5jM4uzVC7BP9jB2QRi5VeJu1i0JKBf3Frl6cP+yBwluUGYc06O9HkZ6SwmuyhSm8JgEyOwmUMQIUXmMNTuH1z43C65+NKrzlkj0ol6R/uMi+o1HIyuEqDcbOVnvmovCabBcKr0mAzE4CZYwAhddYg1N4KbxCwOiQBmO9jsJrlJsd81F4TbYKhdckQGYngTJGgMJrrMEpvBReI8K7dX8Utu13asJb948Tx0850LKBC+VTtKO/rRrkoXyy/shwoN7NSWvGzn2rclF4TZKk8JoEyOwkUMYIFJfwxm1eoUnW44xFTr2zwkY9kpclU6FxDG/pmbQWqKPPXhyHbfujLP18MIU3bJcW0wVTeE0ipPCaBMjsJFDGCBSH8MqyUVUfqa5J1pVaHQfGbg4bdQqvcbSctOafndFVGii8xvtjpOWk8JpsUQqvSYDMTgJljEBxCK8j+yTKz7pCIRt96B84T+xFXsXT4EqrDndSRRwb9F7YqFN4jaOl8FJ4A/WeGhXzv0THzRgBCq8xbgW5KLwmATI7CZQxAsUhvN5IUz+9G0mrXsWJvtNwqsttYadN4TWOmMJL4aXwGj9/guWk8AYjFOR3Cq9JgMxOAmWMAIXXWINz0pp/blyWLLQ+JUuVOTwerNsSjWMnHWjV0IXySW6kJXvQuqErtMJCSM1JayHACkNSCq9JqBRekwCZnQTKGAEKr7EGp/BSeIVAqMuSaVEb97b20IB6Vd24sWe2sQ6qIxeFVwekMCYpc8J7KiMLJ05moGql8oiKchSgdbs9OHD4KCpVSEO0s+gSJuknM5DncqF8Wkqh5qDwhrF3smgSKKUEUnY9BbhyNGufsnOy8vf02mO0j84Zh/Ra91t25BzS8CacObtxqMUS5KR2tIQrV2ko3as0SIRXayuX5GaE15IzxJ6FlBnhXb5qA5588T1s37VfaYnPZk1E4wa1lP+W3+577CVkZGYp/x43cjAGXNJd+W/526iJr2DJD+uUf7c4vSGmTxyhiLFsFF57dmzWigRKkkD1HyrC4ck0VAVPVBL2dj5oKK9WJgovhddfZ0peNBEp30xGdv2uyGnYVXefi91sXnh178wnoRURXqP7NpuPEV6zBM3lLxPCu2zletwx5lnccm0fXNarixKljYuLRUJ8LDKzctDt8hEYftPluLbfBZC0d42djkXvP41a1Svjtfe+xEfzluHt6Q8p6W8fPQ3161THhAduovCa63vMTQIRS0AV3uzUzgC0F70vevAuxJ1YCQqvdrfgkAb/p0tpHMNr9OSn8Bolx3wRL7wejwf9bh6LJqfVwRNjbi3S4hLdHfbgNKxbPBOxsfmvOS66bpQiv9f264ErbxmHXt3bK7Is26Jlq3HvozPw29LZcDgcjPDyHCIBEihCoPrKinC4M5Fe834gSvv1aZFMnhyk7HoGHmci9nY6ZBlVRngZ4bVjhDemY25IfTwc6/CGVAELEjPCawFEE0VEvPAeOZaOrn3vxHldWiM3Lw+nMrLRqe3puOmaixAfF4sP5y3DG3MWYsE7TxZgvPOh51CvdnWMHDoA7XsPxcRRNyvSK9vvf29D/1sfxcp5LyItJYnCa6LzMSsJRCoBCm8b5CU0wYG2+UPBrNgY4fVPsTRGeCm82l9CDHSucB1ec1eSiBfePzZtV6K0/ft0R+f2Z+JE+ik8+eL7uPj8jnj0vsHKkIWvlq7GxzPHF5CU8bzJiQkYN/IGnHnujZjx+D04p1NL5ffN23bj0sEP4Zs5U1C9akVIBJkbCZBA2SQgb3k0t3mJgDsTaDRGf4TXnQNsehxwJgJ9TlkG1PP2HcDSGXBc+wJw/h2Wleu3oPQ/gCWnA8lNgfP/sG5/P/YB9n8J1LwGSG5cpFx/12LHjllA1i54zv4eqCBDTMxvpxb/gf0jPkTSBU1R9YWrzBf4bwkzHz+FrX+50KZLDMpV8tO3NPa2ZG7+BMnJb6SGVBfP54/CMe8xeBqdAzQ9R3/eP5fDsWk5PJc8AkffR/XnA/DPQ/nHVf7c0O6dR5fm5zttUmj5QqpcmBOvXr0aHTt2RPv27fHTTz+FvDe/15uQSyqbGcqM8K74fDoqlMtfYeHTBd/h8envYfWCl/DR/OVBI7yTRg9Bz3PaKXkZ4S2bJwqPmgRCIcAILyO8ofQXNS0/POGfGoc0AIzwGjmr/ssT8cJ7PP0UOl9yB96fMVZZYUG2D79YivFT38SvS2ZjxU+/KGN413/9GmJiopXfe11zPwb171kwhvfCcztgyMCLld84htdch2NuEigLBCi8FF4j/ZzCS+EN1G8ovEbOqjIkvHKoQ0dNgayz++xjw3HoyAnc/9hLynAE+XdGZjba974No+64BgM1VmmY+e58fDx/ubJKQ2JCHIaOmspVGsz1OeYmgYgnQOGl8Brp5BReCi+F18iZoy9PxEd4BcOuvQdx9yMvQMbzynZW62Z4auzQgrV0ZY1dmaimbg/ffT2u6Xu+8k/5UIWM6f3uxw3Kv89sUh/TJ92FKpXKKf/mOrz6OhpTkUBZIkDhpfAa6e8UXgovhdfImaMvT5kQXhXFgUPHEB3tLBjL643I5XJj38EjqFKxXMHQBu/fZWhEbm5egSSrv1F49XU0piKBskSAwkvhNdLfS0p488rVhbtCHd1VjjqyA9HHtiP9gjE42eth3fmUINKU/M/6cpUGrtIQUsexIHGZEl4LeBUpgsIbDqoskwRKN4FIF94o1wkk7Xpes5Gi8g4jae8rcEdXxKnqt2mmccdVx6lqN4fUyFyWzD8us8uShdQQXokpvKGR4zq8ofGyOjWF1yRRCq9JgMxOAhFIINKF15m9E1XXNDHccrlJLXGw9aqQ8lN4wye8eeXrwFWuru72cB7bjuijOxjh1U0sPyGFN0RgFien8JoESuE1CZDZSSACCZQV4fU44pCT0kF3CzpcJxF7ah0ovNrISmpIQ3b9rshp2FV3O8ZuXoG4rSsovLqJUXhDRBWW5BRek1gpvCYBMjsJRCCByBfeHai6pik8zlScrDFcdwtG5exD0v5ZyE1uiYOtGOH1BUfh9d+VuA4v1+HVfaHxk5DCa5IghdckQGYngQgkQOHVblQKb+DOTuGl8AbqIVyH19zNgsJrjh+XJTPJj9lJIBIJUHgpvEb6NYWXwkvhNXLm6MtD4dXHyW8qRnhNAmR2EohAAhReCq+Rbl2WhNcIH8mTNDLTaNYSz8dJayXbBBRek/wpvCYBMjsJRCABCi+F10i3pvAGp0bhDc6IKbQJUHhN9gwKr0mAzE4CEUiAwkvhNdKty4LwBuKifpSiNEttoONjhNfIWWFdHgqvSZYUXpMAmZ0EIpAAhZfCa6Rbq8Jbt2kUElP0l/DHGreS+M6psfozAUheNBEp30xGcS5LRuHthlat2+LLr/mltZA6qwWJKbwmIVJ4TQJkdhKIQAIUXgqvkW6tCq+RvBReo9SKLx8jvMXHWmtPFF6T/Cm8JgEyOwlEIAEKL4XXSLdWhTch2YPoaIfuItKP5SdlhFc3shJJSOEtEewFO6XwmuRP4TUJkNlJIAIJUHgpvEa6NcfwJijYOIZXu/dwHV4jZ9V/eSi85vhxHV6T/JidBCKRAIWXwmukX1N4KbyB+g2F18hZReE1R80rNyO8lqFkQSQQMQQovBReI52ZwkvhpfAaOXP05WGEVx8nv6kovCYBMjsJRCABCi+F10i3pvBSeCm8Rs4cfXkovPo4UXhNcmJ2EihLBCi8FF4j/b2khNdIXSVP+gVjcLLXw0azF8kXCevwZpw6hfXr/6fJ5J9Nf+PB+0bgtEZN8Pgzz2mmSUtNwxnNW2r+xiEN5roahdccP47hNcmP2UkgEglQeCm8Rvo1hbf0R3j//GMjzu/a3kjzK3k6demKj+cuovAaJug/I4XXJFQOaTAJsJRmdx9wwPWPE4gDok9zwZHmKaVHwmqHgwCFl8JrpF8Vt/AGqqP6UQqro7iB9hkJEV5VeKNjYlCtWnXd3SA7KwsHDx6g8OomFnpCCm/ozArloPCaBFgKs+esjEHuquhCNY8fkA1n7fyvHXEjAQovhdfIWUDhjZwIb8VKlXDDjbfq7gY7d2zHR3PepfDqJhZ6Qgpv6MwovCaZlfbsahTC+zhEdkV6uYVO4OgpBzZsLvwAoZaSluxB6wZ5oRdawjkovBReI12Qwkvh5ZAGI2eOvjwUXn2c/KZihNckQAuzO49sh6tCXQtL1C6Kwmst4m37nZi9OFaz0LpV3LipV+l7kKDwUniNnCUUXgovhdfImaMvD4VXHycKr0lO4cyeOvd+JH3/YsEuTvZ4COk9HwrbLim81qKVCO96GQ8NYN3maBw/5UDLBnkon+xBuRQwwmsSd+qndyNp1as40XcaTnW5zWRp+dmd2TtQdU1TeJypOFljuO4yo3L2IWn/LOQmt8TBVqt055OEFX6/AvFHFiKzUn/kJTTSnTdx/5tw5uzGoRZLkJPaUXe+QAldy/5GzpjP4OzWCLFP9LOkTCmEwkvhpfBadjoVKYjCa5ItI7wmAZrMHrv5O1R8+cIipRy6exVya2ov7WJyl+AYXrME/eeftSgO2w9E4caeOahX1RW+HYW5ZEZ4tQFTeAN3PAovhZfCG76LM4XXJFsKr0mAJrMnL56ElK8nFSnlxCVP4VQ3/ZGnUKshqzTk/RMNR5yHqzSECi9AegrvM/A4E7G30yHLqDLCywivkc7EVRqMUAPUVRo4ac0Yv3DmovCapEvhNQnQZHZ/wnt8wCvIaH+9ydKZvbgJUHgpvP76HIc0+D8bVy/OXyHmzqnaY+GNnMcUXiPUKLzGqBVPLgqvSc4UXpMATWaXiWpVHm9WqBRPfBoO3vNjWCew5f3mhOeEQ9lvVG03lyQz2Y5qdgovhZfC60GzdlFIqaD/pKLw6mcV7pSM8IabsPHyKbzG2Sk5KbwmAVqQXcbxqsMa3PFpONV1OHIadrOgZO0icpbGIHdt4WW04i7LUYY2RMLmWvAbPPuOax6Ks/eZcFRPC9thUngpvBReD+o2jUJiiv7T7I81jPDqpxXelBTe8PI1UzqF1ww9Cq9JeqUze6Sv0pA17D141u/UbJy4FwYiqk3tsDUchdeY8Mb9vQQxW1dqt9mfixC763/IatILubXbaqbJbn4pcmu00N2uJbJKw8Z+iD/6FXLSusMVV0t3XeOOfIWovEM41GIpclLP0p0vUMJwr9JgtJIc0mCUnHX5KLzWsbS6JAqvSaKM8JoEWAqzawmvo7IHiYOySuHRFK2yRHjde47Cs/c4XAs3wlEtFc6LzlQSRl/cIiIivJmdn/TbVgkrR5lux+JepSFl/hgkL3/WcL2PX/UqMtpdpzt/iQjvv8uS6a6kT8LSsCzZ8s/ycGi39mfK92zJ/3uNBvlDqbS2K4bHGMVTJB/H8BpDSeE1xq04clF4TVKm8JoEWAqzZ0xPgCencMWdDV2I7+vzx1J4bN5Vdq/diezh78HRqjbiZwy07Gj2HY1Cth9UC9bEQH7v3T4X5YDchwAAIABJREFU1ctrf6q5blXzn3COVOHNK18frnL6o5/RB/+G8+R+lArh/TfC646uDE9U/vJVerao3P1weLJLRYQ30PFMvzf/pLEyihtofxRePb2raBoKrzFuxZGLwmuSMoXXJMBSmF0mrGUv+m82tCMWiOubHZaJayeOevDnGu2IT0p5oFn7qLARDJfwqsMWjFZ8/PWZRrMWyZf72grkzVqJ6Js6I2ZIV8vKLakIb/Zp5yGnnv6PK8RvnI+Yvb/g+ICXkdF+kO7jL8kIbyR/eILCy3V4uQ6v7stQyAkpvCEjK5yBwmsSYCnN7jnugOtglLIOb1QVNxxx4TmQ3f948OmMXM3C5dWmla8wfXcSbuFNivcgOv8Da7o2+QKbbBTeorjUIQ0U3qJsStOX1ii8FF4Kr67bgaFEFF5D2P7LROE1CZDZAxKQCO8fP+Wv/iAzsdOPAk3bO5Ba3oHUilGlOsLbqqEL5ZL0D09Y9kv++EQKL4W3OD4t7Pl9L7JfWKp9fh7PgGfrYSAtAY76lTTTRHeoj+jBnSy7wnFIg2Uow1oQhzSEFa+pwim8pvBxWTKT+Jg9BALqZ0f7DYtBzdP8T1wJociAScMd4aXw+uD35CBll7FVGhjh9d+VjUZ43T9uRfa9Hxo+nZw9miF2/KWG8/tmjFThlfXM1TXNM+fkvypLuCpb+X9Hqkf5X2naKLz2bS0Kr8m2YYTXJEBm102AwssIr7/OQuENo/BWSoKzfX3d56lnzzG4N+wChVcfspwfopH7o/bqEjEdcxHbJU9fQTZJReG1SUNoVIPCa7JtKLwmATK7bgIUXgovhXchimvSmmvVFuSM/AiOmuXg7HW67vPUs/kgXMs3wXlBM8Q+xghvMHB5G6OR+5v2YP6YM12IPoPCqzKsUVH/6iTBuJfF3ym8JludwmsSILPrJkDhpfBSeCm8kbwsme6LoY0TMsJr38ah8JpsGwqvSYDMrpsAhZfCax/h3YWqaxor1XHF1tHdh2UBa2fuPuQmtcLB1tpfhvNXWIV/PzzBCO9/SyLqBx96ypJYhzf0WtovB4XXfm2i1ojCa7JtKLwmATK7bgIUXgqvfYR3B6quaaq77/omzE1uiYOtVoWUn8Ib+R+eCKlD2DQxhdemDSOTID0eT+maAmkzlhRemzVIBFeHwmtMeOUTydh3XLNn5H75K+RTyvLp5JiLm2v3nmppIX9OOfI/PJEf4fVEJSGr0uW6zzpH3hHEH1nACK9uYv8lLK5VGlK+nqzsNOaf7xC35TtkN+iG3NO6KX9L7zHGQM3LVhYKr33bm8Jrsm0ovCYBMrtuAhReY8Krfk1NN2ifhEa+whb5wpsf4fU4U3GyxnDdaKNy9iFp/ywwwqsPmXx4ZveW/JjUT1/lT94668Jo5f9rNnCEZXnC6vcn+q3c3qcz9FW8DKei8Nq38Sm8JtuGwmsSILPrJkDhNSm8SbFAcrxu3jiZBZzKMfTZYQqvNmYKr/7up0ru6sXaH2fp0DOqQH5DKzVwahm762872ethK3cVkWVReO3brBRek21D4TUJkNl1E6DwmhNeR6tacLbRP8HKtXYHPOt3UXg1eqgzmxFefyeulcuSSYR31z/5X1r03Wqd5gxLhFf3BYkJNQlQeO3bMSi8JtuGwmsSILMXIrD8szwc3qMN5eAeN3IygUo1HIhL0P7SWte+TlSuac1X2CLlS2vqkAYKb9F+Fb9xPmL2/oLjA15GRvtBus9GCq9/VFYKr+4GYULbEKDw2qYpilSkRIXX5XIjKsoBh8OaG3RJYKbwlgT1yN2nGsU1eoRWfnaYwssIr79+SOGl8Bq9RkV6PgqvfVs47ML7wdwl6Hvh2YiPK7x2YHZOLh6c/CrGjRyMtJQk+xIKUjMKb6ltOltWXBXeOk0cSErR/yC47U8XMk86QOEt2qyM8Prv6ozw+mdjty+t2fKCxUoVIUDhtW+nCLvwjhj7PLKycvD8xBEF0nsqIwt3PTIdq37eiJ++fAnJSaX3c3kUXvt27tJYM1V4m7WLQkoF/Ufwx2o30o+BwquBjMJL4XXm7MahFkuQk9pR90lF4dWNigm9CFB47dsdwi68f23eieuGT0LbFo3w3IQRyMzMxm0PTMFvf23Fa8/cj07tzrAvHR01o/DqgMQkuglQeP2jWvYLJ635o5MyfwySlz+L7NPOQ049/VLHCC8jvLovTkyoiwCFVxemEkkUduGVo9q8bTcG3/0EmpxWB3v2HcLBw8cxa+oDaN6sQYkctNZO3W4PDhw+ikoV0hDtdBZJkn4yA3kuF8qnpRT6jcJrmyaMiIpQeMMovKdVhrNxFd39xPX3AXj+OchVGjSIcQyv/27ESWu6T7GITEjhtW+zFovwyuFv3bEXg0ZMxpFj6fjizcloWLdGsVPJycnFzSOfRmZWNj6eOb5g/8tXbcB9j72EjMws5W8yrnjAJd2V/5a/jZr4Cpb8sE75d4vTG2L6xBGKGMtG4S32ZozoHVJ4wye8RjsOPzxRlByFl8Jr9HyK9HwUXvu2cFiEd9Gy1di2c3+Ro966cy/mLV6Jy3p1Qd1a1ZTfbxjQq8iEtnDgki8oP/zk6/j8q+/RrFHdAuHNzMpBt8tHYPhNl+Pafhdg2cr1uGvsdCx6/2nUql4Zr733JT6atwxvT38ICfGxuH30NNSvUx0THriJwhuOhirjZVJ4wyi8/PBEEbgc0uC/v7l/3Irsez8EUuLgaFhZ/5XpaAY824/AeUEzxD52qf58TBkRBFThTUhMRKtWbXUf0/Hjx/D7xl/RqUtXfDx3kWa+GhVL73wn3SDCmDAswjt68qv4dsVaXdX+9qOpSE32/ylDXYXoSDTz3flY8O2P6NOjMxYu+alAeCW6O+zBaVi3eCZiY/PHCF503ShFfq/t1wNX3jIOvbq3xy3X9lF+E5m/99EZ+G3pbGU5NUZ4dcBnEt0EKLzhE16uw1uULYXXf39TJ63pPnl9ElJ4jZIr3flU4TV6FBReo+SC5wuL8AbfbfGmWLz8Z0yY9iY+mjke363agA/nLSsQXvnvN+YsxIJ3niyo1J0PPYd6tatj5NABaN97KCaOulmRXtl+/3sb+t/6KFbOe1FZTo3CW7xtGel7o/BSeD3OROztdCikrs5Ja/5xJe5/E0ZWaWCEN6QuyMT/EmCE175dIeKF99c/t+Kme57ErGmj0LxpfXz4xdJCwitDFr5aurrQmF4Zz5ucmIBxI2/AmefeiBmP34NzOrVUWlEm4F06+CF8M2cKqletiKMnc+zbuqxZqSPw/rQs7PzHgzPPciK1ov51eH9blYcTR4Fr7opD7cZRlhx33s87cOK2dxDdpjZSZ15vSZlSyMvzo7FlXxTaNnajfLJHd7nfrM2fTPrUkNDOuYxXvkPWq9/D2aY2YtrV1b2/3J+3w7V2J+JvPRuJt3XTnU8Sll9aDnBnIrPuKCAq/81R0M2Tg4RtTwHORBztfjRocu8E8XNHI/7bachrfD5yG3TSnTfm1y8QvfsXZAx8FTkdb9CdLyprO9J+aAxPdBqyat+pO58jex/i97wGV0pLnOiwWnc+SZi8oS9iDi1EdpWr4E5qpDtv3J43EJW9C+ltlyGvnH42uT9sRvqIOYiqVQ6xF52pe3+uTQeRu/QvxPY6HcmT++rOx4SRQeCP3zeiy1ltUKlSZdx0y226D2rH9u344L230eXsbpi38GvNfOWTC3/PQHfhTKgQCLvwZmXnYPmq9Vi6cj22bt9bBPvrUx8I6zq8E6a9hVX/24junVop+/5903Zs/Gsb+vc5B7ffcBkWLl0dNMI7afQQ9DynXX5+nwhvZrb2d87Zv0jACIE3n87A9k1utOwUjbQQhHfDylwcPwLcMDIBdZsUXWXESF1y1mzHoZvfQmzbOqg0W78MBdvX859H4Z+9DnRo4kGFFP3C+9XP+SL//O2hnXMnZizDyZdXIKZtbcS1rxesegW/Z6/Zhtz/7UTy0K5IHZY/iVXvlrA4RRHe3Pqj9QuvOwcxW59UhDezxwm9u1LSRX86CtFfT4G7yflwNeysO69zwxeI2r0BuYNeg6vTYN35HJnbEb+8IRCdhty6I/Tny96H6F0z4UlthazOP+vOJwnj/ncpog4uQF61q+BJaqw7b/Su2XBk70L2Wd/BXV4/m6zvN+PIsPfgrFUOCX2a695f3qYDyPr2LyT0PgPln+ynOx8TRgaBjRt/Q/u2rVCpcmXceutQ3Qe1ffs2vPvO2+ja7RwsWvytZr6EOGuu7borFWEJwy68sz9YiGdenoM2zRujTs0qiImOLoRw1PCBymSwcG0rfvoFf2zaXlD8ht8345ffN+P6K3viuit6YM36v5QxvOu/fg0xMfl163XN/RjUv2fBGN4Lz+2AIQMvVn7jGN5wtRTLFQIc0uC/H3AdXv9sOKTBPxujQxr44Qlek40Q4CoNRqgVT56wC6/IY4fWzQpWNSiew/K/F98hDRmZ2Wjf+zaMuuMaDNRYpUEmu308f7mySkNiQhyGjprKVRpKuhEjeP/FLbyevcfhWvibJlH3nmNwLfgNjuppiL5YO8LlqJYGZwive2VHsxbFYfuBKLRq6EK5JLfu1qTwUnjjjyxEZqX+yEvQP6SBwqv7FGNCCwhQeC2AGKYiwi681wybgLNaN8Pdt1wZpkMIrVhf4ZXcssauTFRTt4fvvh7X9D1f+ad8BlnG9H734wbl32c2qY/pk+5ClUrllH9z0lpo/Jk6MIHiFl732p3IHv6e4WZxtKqN+BkDQ8pP4fWDy5ODlF3PgJPWtPlU+P0KUHhDOtWYuAQIUHhLALrOXYZdeN/77Fu8+eFXyscm4v5d9ktn3Yo1mcvlxr6DR1ClYrmCoQ3eFTiefgq5uXkFH5xQf6PwFmszRfzOSkx4k2LhaKT/K2RIz4Z8UYrCq90lq6+sCIc7E+k179c/hpfCG/D8pvBG/OUvIg6QwmvfZgy78L701ly8MOsz5QtllSvmf53Me3tizK1ITIi3L6EgNaPwltqms2XFS0x4q6Yi+mL9M9E9e08oQyEovP6EtxIc7gxkVr4acBSet+C343nykHDwA3iikrC388GQ+ifH8PrHxSENIXUlJjZJgMJrEmAYsxeL8P7y+xa/hzBl3O0U3jA2MIsuXQQovP7bqzSO4TXS+wwNafjyISQvmwZ3Qjm441N179Z58jAcuadw/KpXkdHuOv35sneg6pqm8DhTcbLGcN35onL2IWn/LOQmt8TBVqt055OEjPCGhIuJS4gAhbeEwOvYbdiFV0cdSnUSRnhLdfPZrvIU3kgR3vwIryuuNuDRuZ6ywwNn9k5TEV6jHfr4gJeR0X6Q7uxOCq//QP3mg3At38RPC+vuTZGVkMJr3/ak8JpsGwqvSYDMXogAhTdShLeYx/D+G+HNqdkGrmqn6z6rYratQvThzYzwahDjsmS6uxETehGg8Nq3O4RdeHNycjHjzblY9fNGpJ/KKEJizsvjkJKcaF9CQWpG4S21TWfLilN4KbyGhjTMH4Pk5c8i+7TzkFOvo+6+Hb9xPmL2/gJGeIsio/Dq7kZMSOEtFX0g7MKrTlrr0a0dvv7uZwy49FwkJcZjztylqFurqrK+bTg/PBHuVqDwhptw2SqfwkvhpfBq9wGO4S1b18LSerSM8Nq35cIuvFfdNh5ntWmGoYMuUz7wsPDdJ1GnZlV8NH8Znn/tEyz95FlEO0vv5/IovPbt3KWxZhReCi+Fl8JbGq9drHM+AQqvfXtC2IX3vP73YNgNfXFln3NwRvfBeH3qA+jY5nTs2L0fva8dhY9njkezRnXtS4hDGkpt25TGilN4KbwUXgpvabx2sc4UXrv3gbAL75W3jMN5Z7fBsBsuw5D7nkbdmlUx9p5Byphe+ffc2ZNwWv2adufkt36M8JbaprNlxSm8FF4KL4XXlhcnVkoXAUZ4dWEqkURhF94HJryMnXsP4v0ZYzFv8UqMnvwqGtatgc3b96Bxg1r4bNbEEjlwq3ZK4bWKJMsRAhReCi+Fl8LLq2HpJUDhtW/bhV14T57KRHZOLiqWz18M/ZMvv8OylevQrHE9XHFRN1StXN6+dHTUjMKrAxKT6CZA4aXwUngpvLovGExoOwIUXts1SUGFwi68gQ59yfdr0bHtGUhMiLMvoSA1o/CW2qazZcUpvBReCq89hNf941Zk3/shkBIHR8PK+q8XRzPg2X6EH57QTyyiUlJ47ducJSa8b3z4FZ6e8QFWznsRaSlJ9iVE4S21bVMaK07hpfBSeG0mvAYvJM4LmiH2sUsN5ma20kqAwmvflgub8B44dAwTn3sL637dhPatmuKKi89Bl/ZnIs/lwuPPv4sP5i5Br+7t8dTYoVyWzL79gzUrZgIUXgovhdcewuvZdRR5X/2mWRnPtiNwLfkTjroV4Dy/qWYaZ8MqiDq3STFfQbi7kiZA4S3pFvC//7AJ7zXDJuCX3zdDPjixd/9h/PbXVuUjE6++8wVW/PQrhg66FHcMvhxRUTq/M29ThhzSYNOGKaXVovBSeCm89hDeQJcQ17K/kTPmMzi7NULsE/1K6dWG1Q4HAQpvOKhaU2ZYhHfPvkPocfV9mProMPTq3gEejwcPPj5TWaVBticfug19enSy5ghKuBQKbwk3QITtnsJL4aXwUngj7LJWpg6Hwmvf5g6L8P7651ZcPXQ8ln/6HCpVSFOOfvmqDRj24DS8PX0M2jRvbF8iIdaMwhsiMCYPSIDCS+Gl8FJ4eZksvQQovPZtu7AI79pfN+H6Oyfhpy9fQnJSgnL0637bhOuGT8K6xTMRGxtjXyIh1ozCGyIwJqfwLorD9gNRaNXQhXJJbt09Ytkv+deN8ddn6s4jCXNfW4G8WSvhaFULzjZ1dOd1rd0Bz/pdiL6pM2KGdNWdTxJWX1kRDncm0mveD0TpvN55cpCy6xlQeCm8IXU2JrYVAQqvrZqjUGXCKryX9eqC2Jj8i/3+Q0fx3Y8b0O+ibnBGRRVUYtTwgUiIj7UvoSA1o/CW2qazZcVLLMJrkIajVW3EzxgYUu5ZFF5tXhTegP2owu9XIP7IQmRW6o+8hEa6+1zi/jfhzNmNQy2WICe1o+58gRJyDK8lGCOyEAqvfZs1LMK78a9tuPfRF3Ud9cczxyMlOVFXWjsmovDasVVKb50ovP7bjhFe/2xS5o9B8vJnkX3aecipp1/q4jfOR8zeX3B8wMvIaD9I94njzN6BqmuawuNMxckaw3Xni8rZh6T9s5Cb3BIHW63SnU8SUnhDwsXEJUSAwltC4HXsNizCq2O/EZOEwhsxTWmLAykx4a2aiuiLz9TNwLP3BFwLfwMjvNrIOKRBmwuFV/cpxoSllACF174NR+E12TYUXpMAmb0QAQovI7wcw6vdBxjh5cWyNBCg8Nq3lSi8JtuGwmsSILNTeHX2AQ5p8A+KQxr8s+EYXp0nGJNZQoDCawnGsBRC4TWJlcJrEiCzl1nhrVbejYQQ5qtu3Z8/2dXwKg3VUhFVI3+ZRD2be89xePad4CoNGrA4hpcfntBzDpXFNBRe+7Y6hddk21B4TQJk9jIrvEab3qjwGt0flyUrSo7CS+E1ej5Fej4Kr31bmMJrsm0ovCYBMnuZFd6q5dyIj/Po7gHb9zsNRXjda3fCtXab5n5ca3fCs36nMvnO2aa2Zhpnm3qI8vObv8pz0po2GU5a093dmbCUEqDw2rfhKLwm24bCaxIgs9tDeA22Q2lYpSHQoakfpTASxQ1ULoWXwmvwlGK2Uk6AwmvfBqTwmmwbCq9JgMxO4dXZB4xOWisTwvvlQ0heNg05NdvAVe10nUSBmG2rEH14M45f9Soy2l2nOx+HNHBIg+7OUsYSUnjt2+AUXpNtQ+E1CZDZS1R4A+GXoQDZw98ztNZuoHKL+0trZUl4jZ5OFF595FxzN8B98AQ8247AteRPOOpWgPP8pkrm6CvbwlGu9H5ESR8BpgpGgMIbjFDJ/U7hNcmewmsSILNTeHX2AUZ4/YNK+vF1xK37UDNB9KF/4DyxF3kVT4Mrrbpmmozz7kNWkx46WwJwZu9C1TWNlfSu2Dq688GTA2fuPuQmtcLB1iv157PJl9ayb3wD7r/2a9Y77t0hiKpfMaRjYuLII0DhtW+bUnhNtg2F1yRAZqfw6uwDFF6doHySpX56N5JWvYoTfafhVJfbjBXik8tbeI0UWFqFV43wah0zI7xGekLk5aHw2rdNKbwm24bCaxIgs1N4dfYBCq9OUMUgvLKLuOMrNCvkzN6Jcn8PgSuuDo41nqmZxu1MRm5y65AOyE5fWgup4kxcpghQeO3b3BRek21D4TUJ0ObZXTvzP3ZgZHPEeRBVRf+yW7KP4v60cKDj4hheI62en6e4V2kIVNNwRHgD7S86409UWdsGeQlNcKDtOuMQfXJSeC1DyYLCSIDCG0a4Joum8JoESOE1CdDm2U9NSTBcQ2dtN+IHZIeUn8LrHxcjvCF1pYLEFN434czZjUMtliAntaMxiMxFAjoJUHh1giqBZBRek9ApvCYB2jy7KryOVP2RWk+eA8gAKLzajctVGvx0ek8OUnY9A48zEXs7HbLszKDwUngt60wsKCgBCm9QRCWWgMJrEj2F1yRAm2dXhTemc57umnqOO5C30Unh9UOMwkvh1X0yeSXkkAYj1JinuAlQeIubuP79UXj1s9JMSeE1CdDm2Sm8XIfXSBet/kNFODyZyE7tDCD/k8jBNxfiTqyEJyoJezsfDJ5cZwpGeBnh1dlVmMwCAhReCyCGqQgKr0mwFF6TAG2encJL4TXSRVXhNZKXwqtNjRFeI72JeYqbAIW3uInr3x+FVz8rRnhNsiqN2Sm8FF4j/TZl11OAK0cza8rOycrf02uP0S7aGYf0Wvcb2a1mHkZ4GeG1rDOxoKAEKLxBEZVYAgqvSfSM8JoEaPPsqvBGn+HSXVPPKQdc26JK7RjerGHvwbN+p+bxxr0wEFFtautmoZWwLIzhDQSoxvf5n5/dc3aGKY56M1N4Kbx6+wrTmSdA4TXPMFwlUHhNkqXwmgRo8+xlcVkyCm94O2VxCK8j8xiqPVJD80DcKdWw/5EtYTtIrsMbNrQsuBQQoPDat5EovCbbhsJrEqDNs5flZcnC1TSM8IY/wkvh/a/3Ju5nhDdc5zLLLUqAwmvfXkHhNdk2FF6TAG2evaTG8NZtGoXEFP1wtv/pRkY60G9YDGqe5tCfsQRSqsJ7Wg03UuLdumuwbku0knb89Zm68wRLmPvaCuTNWonomzojZkjXYMkt+b04IryWVNRgIYzwGgTHbBFBgMJr32ak8JpsGwqvSYA2z15SwmsUS2kSXqPHaIXwZnZ+0u/uE1aOMlo1XfkovLowFUnEVRqMcWOu4iVA4S1e3qHsjcIbCi2NtBRekwBtnr2khDch2YPoaP2R2lMnPXDnOUpFhHfB6hjsOxql2fL7jjqQnetA1XJuxMdqd46beoX2uWatUii84TvxGOENH1uWbH8CFF77thGF12TbUHhNArR59pIS3mbtopBSQT+cP1a7kX6sdAxpCHRU6nCHG3vmoF5V/Stj6CdV8ikZ4TXWBozwGuPGXMVLgMJbvLxD2RuFNxRajPCapFX6spfFVRpKspUovCVJ35p9M8JrDUeWUjoJUHjt224UXpNtwwivSYA2z07hLd4GovAWL+9w7I3CGw6qLLO0EFCFNyExEa1atdVd7ePHj+H3jb+iU5eu+HjuIs18NSom6C6PCYsSoPCa7BUUXpMATWZP+Tr/q1VaW3oPP1+yMrnPcGb/5IVc7NniAYc0cEhDOPtZOMum8IaTLsu2OwFVeI3Wk8JrlFzwfBTe4IwCpqDwmgRoMnv1+/PXNNXa9j5dPF+yMnkIhbJTeOOw/UAUOIbXyl5VvGVReIuXN/dmLwKHDh7Am7NnalZq3949eO/t2ahWrToGDrpJM03t2nUw4JrrNX9jhNdcW5cZ4c3MysHRYydQrUpFREUVnf3udntw4PBRVKqQhminswjV9JMZyHO5UD6t8OKoFF5zHdBs7uRFE5UiYresQNyWFchu0BU5DfLXUz3Z62GzxRd7fgovhbfYO53FO6TwWgyUxUUMgXVrf0afnt3QqnVbfPn1ipCPi8IbMrJCGcqE8N750HNY8sM65cArlEtB3wu7YuTQAQUglq/agPseewkZmVnK38aNHIwBl3RX/lv+NmriKwX5W5zeENMnjlDEWDYKr7kOaFVuEd+UbyYj/YIxpVJ0VQ4UXgqvVedESZVD4S0p8tyv3QlQeEu2hcqE8L4w6zP07N4edWpWwY//+x13jHkWH7z0CJo3awCJ/Ha7fASG33Q5ru13AZatXI+7xk7HovefRq3qlfHae1/io3nL8Pb0h5AQH4vbR09D/TrVMeGB/NcRFN6S7cDq3im8XJbMHj0xeC24LFlwRlopuCyZMW7MZR8CFN6SbYsyIby+iM/rfw+uvuw83HrdJZDo7rAHp2Hd4pmIjY1Rkl503ShFfq/t1wNX3jIOvbq3xy3X9lF+W7RsNe59dAZ+WzobDoeDwluy/bdg7xTe0iu82/Y7MXux9lcm6lZxw4oPTdikmyrVoPAaaw0KrzFuzGUfAhTekm2LMie823ftV4R2xuP34JxOLfHhvGV4Y85CLHjnv0+NyhCIerWrK8Me2vceiomjblakV7bf/96G/rc+ipXzXkRaShKFt2T7L4X3XwKl+cMTFF6bnEQWVYNDGiwCyWIijgCFt2SbtEwJ76mMLFw3fCKSkxLxxrOj4XRGKUMWvlq6Gh/PHF/QEjKeNzkxAeNG3oAzz72xQI4lweZtu3Hp4IfwzZwpqF61IrJyIvNrUCXbLUPfu3PeeER/OQF5F4+F65JxoRdgkxxvPJWB7ZvcaNkpGuUq6f+08PofcnH8CHDDfQmo16TopEubHB6rASB+YbTCIat3XkTycJz8A3ErmsOT1BTZ3X6ZTCc+AAAgAElEQVSz7Bhjf74UUQcXwFX9KniSGusu17lrNhxZu5DT8Tu4y3fWnY8JScBqAmvWrEa3szujXbv2WPHDqpCLj4/ltT1kaF4Zyozwyljdu8Y+j30HjuCt58egXFqygkFPhHfS6CHoeU47Jb1vhPfwiWwz/MOed89hB75ZH42snPxddTndhTPqusO+3+LeQfzCCUhcNAkZvR5CVu+xxb17y/b3wbPZ2LXZgzM6RCG1on7h3fijCyeOAleNiEXtRlGW1YcFWU+g4tJ4pdDD5+ZPko20zXnqT5Rb3QquxCY4dtYGyw4v9ZfLEXN4IbKrDIArsZHucuP3voGo7N043mYp8tI66c7HhCRgNYG1/1uDnud1Res27fD10u9DLr5ialzIeZjhPwJlQnhPnMzAiIefR2ZmNl55amSB7AoGdQzv+q9fQ0xMfuSl1zX3Y1D/ngVjeC88twOGDLxY+a00jeHNzAGe/SyhQHbVZh/cMxv1q0aW9HIMb+kdw1vWLsgcw2usxSts7If4o18hN+F0uGMq6i4k5uR6RLnTcajlEuSkdNSdjwlJwGoCHNJgNdHQyot44c3IzMbVQ8cra+hOGz8cyUn5n+aLiopC9SoVIL+3730bRt1xDQZqrNIw8935+Hj+cmWVhsSEOAwdNbXUrNKwdX8U3lhc9Imwe8s8nNsiN7SeYvPUFF4Kr827aEH1KLzGWkoVXmO5QeE1Co75LCNA4bUMpaGCIl549x88ClmVwXeT9XhXfD5d+bOs0SsT1dTt4buvxzV9z1f+KeN+ZUzvdz/mv5o7s0l9TJ90F6pUKqf8287LklF4DZ0TJZqprK/DW6Lwi2nnFF5joBMOfojojL81MycefBfOrO3IqDIQrrh6mmkyqg2GK66WsZ0zFwlYQIDCawFEE0VEvPDqZeNyubHv4BFUqViuYGiDd97j6aeQm5tX8MEJ9Tc7C+/Rkw48+1n+eEHvrW/nHLRuGFmT7RjhZYRX77le0ukovNa3QKVfeyP2+HIcar4AOWn5Hw3iRgJ2I0DhLdkWofCa5G9n4ZVDW/VHNJZtiEHWvyMYWjZwoV+Xf2ewmTx2O2Wn8FJ47dQfA9WFwmt9S1F4rWfKEq0nQOG1nmkoJVJ4Q6GlkdbuwqtWWSawJWiv7W+SgD2yU3gpvPboicFrQeENzijUFBTeUIkxfUkQoPCWBPX/9knhNcm/tAivycO0ffZIE97EFCA6Wv+yZKfSPXDlAf2GxaDmafrz2b5hI7CCFF7rG5XCaz1Tlmg9AQqv9UxDKZHCGwqtUhzhNXmYts8eacJrFDiF1yi54stH4bWeNYXXeqYs0XoCFF7rmYZSIoU3FFoUXpO0wpc9UoT34G4PcjK1OS3/LBeH9wJd+zpRuYb2xyUq1XQgLn/lPW42JUDhtb5hKLzWM2WJ1hOg8FrPNJQSKbyh0KLwmqQVvuyRIryBCKlLljGKG75+VBwlU3itp0zhtZ4pS7SeAIXXeqahlEjhDYUWhdckrfBlp/CGjy1LtpYAhddanlIahdd6pizRegIUXuuZhlIihTcUWhRek7TCl53CGz62LNlaAhRea3lSeK3nyRLDQ4DCGx6uekul8Ool5ScdV2kwCdCi7BRei0CymLAToPBaj5gRXuuZskTrCVB4rWcaSokU3lBoMcJrklb4slN4w8eWJVtLgMJrLU9GeK3nyRLDQ4DCGx6uekul8OolxQivblInjniQfgTIzgIq1fg/e9cdH1WxhQ+EjnSkiShFReldihTpvfcSeq+hBELoJPTee++9d1BBEBVQQUVBQJCq0jskeb/v8GbdXXbJ7t7ZzW5y5p/3DHunfDN37jdnzvkOUdKU7teFFcLr8PTID6MYASG8+idALLz6MZUa9SMghFc/ps7UKITXGbTEwhspWn+dD6edi8Lo2ZMI02+rtIpDWXPZltGKtEKzH/jd+ZPi3Lls85EE3y2jRN8vp8cFm9HTQs1t/uZlikwUluI9Z5r0qt+KSoNXTYfLnRHC6zJ0dh8UwqsfU6lRPwJCePVj6kyNQnidQUsIb6RobZzxgq7+8R/ZxQOw8PoHx4302ch+oKy4kf3O3r8/KBdEDysGu/p4lD8nhDfKp0BLB4TwaoHRohIhvPoxlRr1IyCEVz+mztQohNcZtITwRorWtIDnNn/TbWK8SJ+N7AeK8IYnSEbhCZNF9nPTv8d+co9iP71HQngdhkx+6EYEhPDqB1cIr35MpUb9CAjh1Y+pMzUK4XUGLSG8kaK1cvwL+veapYU3XgKiDqH6CO+zLJ/R82wlI+2L+kG8819R/AuHtRPeiGdEseI73A2Xfnj/TgSd/e4Vnr9+G0bwj/64UGxKmio2JUlB/P+l+BYCQnj1z5cQXv2YSo36ERDCqx9TZ2oUwusMWkJ4I0Xr1JdhdGRLmMXvClf0oyIV/SJ9NrIfKAtvVBPesCux6dnueBRx/1Uwnl/GcIpf6TnFSmZJ9CMbjyP/fvV8BG2c+cLmTzNkiUV1uxp3FXGkH/IbfQgI4dWHpapJCK9+TKVG/QgI4dWPqTM1CuF1Bi0hvA6hhcA15cebOkMsLQFraNhbCO/jeQlMZFcBEidHGJNe3QUW3l+PWx4gVBuw8oqFVzfi7q9PCK9+jIXw6sdUatSPgBBe/Zg6U6MQXmfQEsJrEC1jj3sL4X00IeFrA4mdJoISNn9qbIDydIxAQAiv/mkWwqsfU6lRPwJCePVj6kyNQnidQUsIr0G0jD3uzYTX791wStDgmbEBytMxAgEhvPqnWQivfkylRv0ICOHVj6kzNQrhdQYtIbwG0TL2uLcQ3qdr4xP8eM1L3KIvKV4x2762xkYtT0c3BITw6p9RIbz6MZUa9SMghFc/ps7UKITXGbQMEN6Ie7Ho5c+2A7diJY2gODlt+2ka7F60etxbCC/UGZ4f+i9oLXbGcCG70WqluXcwQnj14yuEVz+mUqN+BITw6sfUmRqF8DqDlgHCC4sgLIO2ilyHOzYJ3kJ4Heut/EoQsI2AEF79K0MIr35MpUb9CAjh1Y+pMzUK4XUGLQOEFxbeFz/H4Rpg6YWkFSL7Yd2NnTRcLLwOzIMQXgdAkp94PQJCePVPkRBe/ZhKjfoREMKrH1NnahTC6wxaBgiv+aPKBxRBTrDuSnEMASG8juEkv/JuBITw6p8fIbz6MZUa9SMghFc/ps7UKITXGbSE8BpEy9jjQniN4SdPewcCQnj1z4MQXv2YSo36ERDCqx9TZ2oUwusMWkJ4DaJl7HEhvMbwc+bpsK/O0YuROyni4SttYb+SH1DcgVUoVpIEzlQjv7WBgBBe/ctCCK9+TKVG/QgI4dWPqTM1CuF1Bi0fI7w3bseip89fpb+1Lu+n8z1XCiG8BherE48/LT+ZIh5Z6grH7V6W4jQq6EQt8lNbCAjh1b8uhPDqx1Rq1I+AEF79mDpToxBeZ9DyMcK7aG98unTTUi9WDWFY8ycGR+75x4XwegbzsJOX6XnXVa81FjvfuxR/RhPPdCIatyKEV//kCuHVj6nUqB8BIbz6MXWmRiG8zqDlY4R313dx6cad2PTkeSy6eScWJYhLlC7lK8tuqwq+lxXMWwgvdHhfHItL4f8/TPhlC6O4BV4aXEne83jE7zfpacvFr3XI77NsFG9MXe/pqI/2RAiv/okTwqsfU6lRPwJCePVj6kyNQnidQcvHCK/q7sWbsWnx3vj0ftpwnyS6ahyK8IYnSEbhCZM7PHOxn9yl2E/v0YNyQfSwYrDDz9n7YUzItPa0ziyKuHHfAoJ4A6uQX9VchvGL6RUI4dW/AoTw6sdUatSPgBBe/Zg6U6MQXmfQEsL7RrSO7wmjb/fYzhhXuKIfFaloO9Oco1OgCK+jv7f+nS7C+2hCwtetn++GE2TmokuJuHaPXkzZTxEPX43J77MPxX9X0+QK4dUEpFk1Qnj1Yyo16kdACK9+TJ2pUQivM2gJ4bVAAATXPCTu6vkI+usP28FwGbPGpneyWQbQgQQ7UxThfZ4hN4VlyO3wo37XfqJ4137SZuG1RXhjvR1BiVq8UjSQIgi8CQEhvPrXhxBe/ZhKjfoREMKrH1NnahTC6wxaQngtEJgW8NwQet0mxnPqeW/x4X08LwFnyjMvyJoXv5IxPJwCQ37sswgI4dU/dUJ49WMqNepHQAivfkydqVEIrzNoOUF4X555lT7YVkGKYZVaGGmFbRVOO5wswmDvXj3uLh9eRXjfyWp7nPY6f/WPV+PyVcIbdiU2PdscnyL+z29h3U1Y85m2+dIy6VKJ1yIghFf/1Ajh1Y+p1KgfASG8+jF1pkYhvM6g5QThtRXY5ExTOtMOu5vwOuuaoPx8fZXwqnmMuBeLKEEExYrvzMzKb2M6AkJ49a8AIbz6MZUa9SMghFc/ps7UKITXGbRcILyx00QQxXPcUhv+d2yiZ8QBUH7vOp4cQpFaV4dTOs9LKpP7hVOPKwtvTCW8ToElPxYE/o+AEF79S0EIr35MpUb9CAjh1Y+pMzUK4XUGLRcIr7OuCcoVQgjv62B7iw+vwSUjj8dwBITw6l8AQnj1Yyo16kdACK9+TJ2pUQivM2j5AOFNnjiC8mazLQ1ma6jIxHbpRmwyYuF9J5vtbG72oL16/pXl2tddGgwuHXk8hiIghFf/xAvh1Y+p1KgfASG8+jF1pkYhvM6gJYTXAoGYqtJgcMnI4zEcASG8+heAEF79mEqN+hEQwqsfU2dqFMLrDFpCeG0S3pim0mBwycjjMRwBIbz6F4AQXv2YSo36ERDCqx9TZ2oUwusMWkJ4bRJeCVozuIjk8RiFgBBe/dMthFc/plKjPgRaNatPe3fvsFnhqvXbqGTpsg41liHV61k+HXpQfsQICOE1uBCu/fvEZg1KlszTQWtR4cMrhNfgIpLHYxQCQnj1T7cQXv2YSo36EBDCqw9LIzUJ4TWCHhEJ4SWSoDWDi0gej/YIxLv/NcW/c4jHmeRKKP/vg3eD+H+fpShDz5MWjzYYxHl8ltKczE8vE35Etwqc8si4hPB6BGZpJIoREAuvsQkQwmsMPyG8BvATlQYD4MmjPoVAkr/GUZJLQ2z2+cH7w+hBxr4+NZ43dVYIb7SZShmIlyEghNfYhAjhNYaf1xFePz+iJAkdT3Tx9HksevqcXJIlO77HvvyZyqb2JneHIhX9nEJf6fCGJ0hG4QmTO/xs7Cd3KfbTe/SgXBA9rBjs8HPyQ0FAFwLmFl7rOsXCaxxlsfAax1Bq8H4EhPAamyMhvMbw8zrC6+pwXNHhfVNbSrLMWSvum+pUhNfVMQrhdRU5eU4QcBwBsfA6jpX8UhBwBgEhvM6g9fpvhfAaw8/rCG/iBEQfvON44onrt2PTzTuxXLLweprw+t35k+Lcvmyz2QTfL6VE36+gxwWb0tOCLWz+5mXKTBSW4j2DMy6PCwKCwJsQEMIr60MQcA8CQniN4SqE1xh+kRLeWImJyM9xF4OIR7GIwohcTS3sSZUGTxNeR6y/YsU1uKDlcUHAIAJCeA0CKI8LAnYQEMJrbGkI4TWGX6SE19XqhfA6h5xydxDC6xxu8mtBQDcCniK8scIeULyHP3D3k17oR3Ef/Uj3s4yhF4nzUnjc5PQiUS7dQ5P6BIEoRUAIrzH4hfAawy9Swuv3fjjFSuy4hfflRT+ix2LhdXRaUs6qxD+Nc+dPgssDXBZe/t9t4Xan3Y5WI78TBAQBTQh4ivDGe/Atpf6xtM1eP0tWmv7NtVPTiKQaQcA7EBDCa2wehPA6iN+Dh4/pZVgYpUiWxOKJyHR4Haz+tZ+5auFNEI8oXYpwh5u9+ygW3X3oGz68tgaVvm8iu2O9Pu6xwzjIDwUBQUAPAp4ivGgn2fkeNjv94q18dD/LaD0DkloEAS9BQAivsYkQwhsJfo+fPKXAkXPo4NevBNRzf5KVpo3sTqlTJuP/9jbC6+py8AWVBltji//HYbtDfpb1M1fhkOcEAUHARQQ8RXhd7J48Jgj4LAJCeI1NnRDeSPCbv3IHrdv2BS2bNpASJohHnfpPosyZ0tOIfq3fSHjfVK1KO+ysFfdNdd55GIt+uBDH4ic3/o1Fz17EoicvYtGN27EI1t/0/7f+vpfO0gr8ftowypzWcctwZMvOHbJkkbUp/y4ICAJRj4AQ3qifA+lB9ERACK+xeRXCGwl+9doNoYqlC1G7ptX4l3u++JYChs6kM4cWUaxYsexaeD1NeG21t2hvfLp0M7bNrgxr/sTYyonkaSG8boVXKhcEvA6BhP9uoTgPT1Psl/9S4utzKDxOKnqUvgP380maBvQy4Yde12fpkCDgSwgI4TU2W0J4I8GvUOWONDKwDZNelF9+v0T12w+lo9tmULIkienB4xcOzUDYXaInP70in09+9KOwe0QJc4eTX/II8ktGlDCPPuuq6tCmo3507d9YNvvXpfpLh/rtzI9+OvaSTn/zSgP4z99f/e97H77KppbrUz/KXdTSAu1M3fJbQUAQ8G4EEpz2p7g3Vtns5JM86+llmhrePQDpnSDg5QgkSRTXy3vo3d0TwvuG+YmIiKCcZVrRzFG9qFTRPPzLPy5dpRotB9L+NRMofdpUDs/ukwtEf823/fOEmYkytnO4Kq/94f5NT+nA5mc2+1e2VnwqVzuB1/ZdOiYICAIGEbi+kejeT7YrydiI6K3sBhuQxwUBQUAQcB0BIbyRYAcLb0j/tlShVEH+pSEL74+vrJ3WBVZed1h4XV8Wrj15999wuvePbQm2ZKljUfJUtt0rXGtNnhIEBAFBQBAQBGIOAmLhNTbXQngjwQ8+vJXKFKa2TaryL3X48BqbMnlaEBAEBAFBQBAQBGIaAuLDa2zGhfBGgt+8Fdtp/fYvWaUhUcL41DFwomGVBmNTJk8LAoKAICAICAKCQExDQAivsRkXwhsJfo8eP6U+w2fRV9/8yL/M+VFmmhbSg9KkTs7/bU+H19i0yNOCgCAgCAgCgoAgIAj8h4AQXmOrQQivg/jde/CIXrx4aUo4oR4TwusggPIzQUAQEAQEAUFAEHAZASG8LkPHDwrhNYafWHgN4iePCwKCgCAgCAgCgkDkCAjhjRyjN/1CCK8x/ITwGsRPHhcEBAFBQBAQBASByBEQwhs5RkJ4jWH0xqfFpcGN4ErVgoAgIAgIAoKAIMAICOE1thDEwmsMP7HwGsRPHhcEBAFBQBAQBASByBEQwhs5RmLhNYaRWHjdiJ9ULQgIAoKAICAICAKRIyCEN3KMhPAaw0gIrxvxk6oFAUFAEBAEBAFBIHIEhPBGjpEQXmMYCeF1I35StSAgCAgCgoAgIAhEjoAQ3sgxEsJrDCN5WhAQBAQBQUAQEAQEAUHAhxGQoDUfnjzpuiAgCAgCgoAgIAgIAoJA5AgI4Y0cI/mFICAICAKCgCAgCAgCgoAPIyCE14cnT7ouCAgCgoAgIAgIAoKAIBA5AkJ4I8dIfiEICAKCgCAgCAgCgoAg4MMICOGN4sl7GRZG1278Q5neSRvFPXFf8//euU9x4vhRsiSJ3ddIFNfs6TFGxbr586+b9G6GNBQ7dqwoRtt9zV+4fJ2yZErvvgak5miJgKffDU/vN1ExaTFhjFGBa0xuUwhvFM4+SEtQ6Dx69OQpzQjtGYU9cV/T/9y+R617jaG61UqRf/2K7mvo/zWHhYXThp1fUcL48ah6hWJubw8NeHqMUbFufvzlD2rbexwtmNCXcn+S1SO4erqRVZsP0MzFm2n3ynGUOFECTzfv9vai4t1w+6C8oAFPvxue3m+iYt14eoxesIykCx5AQAivB0C21YQiLddu/kuzxwTQW4kTRlFP3Nes2rSKFcpJgV0aU6xY7rUMfv/jbxQyZRn9df0fWjkzmD7InNF9g/t/zZ4eY1SsG/VBHxnYmiqWLux2TKOiAUV2F0/uT1nff8ftXfj737t05dotyp/rQ7e3hQai4t3Aukn7dgpK93ZKj4zxxcsw+vLYD1TuswIeaQ+NePrd8PR+ExXrxtNj9NhiMWvI0+9GVIzRG9sUwhsFs2KLtHxz8hfaffBbGtLb3y3E8NDRU7Rmy0F2nWjZoBJlSJfarSO3tWm5e4xrtx6iYROXUNGCOWhmaE+KFy+ux8c4Z9k2SpM6OdWu/Jn2tm2tm1v/3KUh4xfR6IHt3eIy4ukP+m9/XKE1Ww/RP7fvUpli+ahWpRJueR/MJycqyK5/j1FUJP8nNCTAX/s6sVWhp9+NU2fOUbOuITQ6qL1HblpAdgNHzqHzF/+i9fOGuf3d9xayK3uqsdfn+fMXtHrLQTr6/RnKkyMb+devRIkSxjdWaSRPe/rdcOtgfKxyIbwenjBbpOXm33fYx/Xod2e0fxxevHhJ3YKn0O8X/qJuresQXvA5y7fRvHF93GbJskV23TlGTOHabV/QuJmracWMYNp96Didv3SVpo7oTrfvPqDvfjhLFUsX0jrT9sZ44+/b3E4ezdf+ttbNnXsPKH68eLRlzxGqX700xfHz0zpGT5PdL4/9SJ0HTOJ3AGQXRPT9jOloaJ+WWsflDWQ3e7b36PGTJ4T3YmifVtrXi/kYPf1u4IPevu8EqlWpOJ06c57eTpWchvVpxQdBdxRFdq/f+pcyv5uOQAKx17nj0Kn67+l3w5v2VOxFW3Z/zYdRP7/Y2qbU03vqX9f/pjYBYylliqTUvlk1OnX6HB0+/hOtnDmYEiaIp21c5hV5+t1wyyB8uFIhvB6cPFukRW2cq2cNcgsBnbFoE+048A1tmD/C9BLv/fJ7WrZ+Ly2bFqR99LY2LXePcdOuwxQ6dYWFG8PJM+do14Fv6PjJX6lI/o9pYI/m2sZqa4wgZ/NWbKfdK8Zqty7ZWjeqD/4NKlHdqiW1jc3eBx2BlfsOn6DwsHA+POi+IcDBpGLjvjSoV3OqUaE4dwNEpkH7ITSgWzMqnC+79jFaW3bdPUa4McCyW7poXurbuRFbrvcfPkFb937NhzN3FE+/G+qDHjqgLZUvWZDg/zlp3jpKnyYlNa1TXvsQFdkFtnPGBlCihAno4uXr1HfEbFoyZYBbfLGtya6714237KkwmmzZfYSu37pNOFzMH99XG76e3lOxEHEDkTlTehret5XpFil06nJKniwJdfavqX2tevrd0D6AaFChEF4PTeKbyK47fSOrNAukPh0b0ucl8ptGio/EtAUbKKBDA62jf9PG7K4xwqJatn4AX2N+/MF7pvEoApUgflzat2YCJYiv58Rub2NGsJM7/D/fRHbd5Rtt/UH/4ugPTCCqlS/KwYDb9h2lOWN70ycfvq9t/ez54js+MKydM9RCBQKELVf2LJQts16/Wmuy6+4x2iK7CjyQQty6xPGLTW2bVNOmguHpd8P6g24+vvCICAocOZsPM6WL5dWybmyRXfM2j37/M23ff5QPu0nfSqSlTU+/G960p2Ivat9nPB0/9SttWjiSPsyiJ0bC03sqFgLaLFWnBx1aP9ni5uGX3y/RpSs3qUrZIlrWi6rE0++G1s5Ho8qE8HpoMuFaMHvZVmrVsDIHqNm6Elu56QBle/8drdYsnGIb1ChtspqZDxcSTE+fPqMPs76r5Toc17O4Xm/XtBqfmD0xRlgbYAU8uG4SxY0bh4cHstuSfSQ/piRvJaJzF/6iCUM6a7G8Wo/RmjjhIzxxzlqeZx1XuNbrxtbHAZvpT79e0KaC8e2ps3Tn3n0OUMMaqd5iAM0c1YtKFc3D+G7be5T9bJdPH6jt7cE1dOiU5bRlcchrPruPHj+l3y9cYUm01CmTaWlzxcb99Gn+j/lWxRNjBPncvu8YtWlcxaZPMv59xKSlvDeMGtBeC+n19LuBdXP/4SO7QWOnf71AgSFzqGXDytSgemnD84h3Az7zrRtXZsuudXn85BnNX7md9n91gpZNH6jFx93T74a37Kkgu8FjFhDk15rVLU+4OVw4KVBLQKKn91SskydPn1PBSu1p14qxlOmdNBZLB2M9e/4yJUmciN7LqEcu1NPvhuGXK5pWIIQ3CibWFhFcsXEfX8vDL6pF/Yr0UdZ3tfTs6+/OsHLB7DG9TS82fJdgsTt/8SrBApohbWqaMaonk4m5y7fxS240Gt+TYxw/ew1fY04Z0Y0ePnxCLbqHMtkN6t6MycX67V/yid3WR9EIyLbILgJn9nzxLfVqX59qVizO/ou6ij2yi0MNpMK6tqpNxQvl1NUc1wPyDiWR8YM7meq9euMfqtUqmL7bNVtbW/jItOo5hsoUz8vrH/7IERERtGrzQV6/Wd/LwFepfTs1pAY1ytD1m//SuFmrKaR/O8P+dp4aozVY8C2HZRe6v+2bVacUyZJQ90FTqWyJ/FSnih43lah6N9RYESy38+BxKvlpbnZpePLkGdVpO4jmje/Lc6q7QPli0tz1XG27plX51mfR6l3024UrHECns3h63UTVnho7VmwKGj2Pye7csb3ZiHD4+GnKmD41uwToLJ7cU6cu2ECXrtxg/3KMCQXW6z7DZrLxBAeqkp/moeF9WxP2JwQHd2hWXduYPf1u6JwnX61LCG8UzFz/0LlUplheE6kE2Z29dCtND+3JQSwTZq9h8qJLRxY+uyMmLaFubepShZIF+YNTqmhe6tGmLiVOnJCWrN1Nv/z+J5PsNVsP0tKpQZQx/duGkPHkGEGMsHFh8+0SNJlSJk9q4ZelBhIeHqHFcob6YD1q33c8DevTkq2E5terQ3v7E65TcXhYNKm/tuv4DTu+onMX/zJJvKlrMhUQNH3RJj6s4L91FWzyOT7KbGGRw4ce0m8Th3bW1QzXc+/+I1bZQKQ9LHKbdx+h+Su2U+iA9vRZkVyk3AL6dW5MwyctoXpVS1HnlrUM98GTY1SdhdW6dN2e7MsLVwZYKof1bUWXr96ik6d/10bOHHk38Bt3SAZiHD0GTeP1iP3lwJETrDc+ce46KlYwhzZSb74AoPmd9f0MVDjfx4xptXJF+WaiQYdhWg9oaNPT6yaq9rT3lX0AACAASURBVNQl6/bQ5l2HacnUoNdcQ3x5TwWJnbt8Ox+Ilkzpz3t4k84jKLhnc6pXrTRFhIdT/9B5lDdHVjp24hcKCwujqSO7a3GPi4p3w/BGGQ0qEMIbxZOoyC5IpjotH/v+ZxoxeSntXD5GW+9wWvXz86PJ89Zx5DQCOswzZiFg6MXLl1rIrnWnPTVGbL5FqnaijQuG8/W3KvADhX/o3//eo8+K5KaBPZpRqhRJ9WH7f0kk88AZVD594Sa69+Ch1oA51WlbPmGPnzylQpU7vuaXZmSgcDUYPnEJTRvZnZIlfYvHhCDIrUtCORAJ1t6bf9+m7NkyabOgP3v+gp4+fU7FanThwBjIzKmy88Bx6jtiFnVpWUsL2UW9bxpjmlTJWfED7wbGqEsJ4/TZi9Rj0FTav2Yiv4dwaegUOJEPErCmK/cRI3Nn/qytdwM442oa7wcKLOcdm9cwuQYZbXvx2t3sThTSvy1XBU3XgaPns8vRtqWhWq7DzfuIPS5v+ba0d/V4eiddasL4Bo1ZQMdO/Ey1Kn1GvTvqjVmIindDjddTeyraCxg6gz4vnp99+KPjnop1Ej9eXKrXbggHlHZtXds0TtwqlWsQwDdnusguKvf0u2H0XY4uzwvhjcKZxIcG1jJzsovujJmxiq/hm9QuS+VLFaScH2XW1kuV9axq2U9NdcISosuya91RT48RxPb02Qs0ol8b9tmD5Xzawo18aodM0cadh2njzq9o1cxB2j7sQaPm0ZVrf5uixIEBNtEW3ULpwaPH3C6CdSDCr6NAqxZuDCoSXtV58MhJ6hY8lRrV/JyKF87Ftwg6LHcq0h+Euki+j9kSiQNDyJTlbIXF1TQk0vBByJfzAx1DZHLUqf8k+mb7TJP0EdwYmnYdqc2ya95RW2OMiCDqO3wW+/gmeSshvZ0yucn1R8cg8YEtUTgXk3e4jTTrOpL93+HSgaLbp9/83XgrUULqEDiBcLheM2cIuzVhL4LbT1D3pjqGx4FBlZsGmtYp1mdgyFx+T5BwQ7e/OzqNMZy7eJVJNgJVIXOXMnkSGhPckeLG8SPd/u5R8W54ek89efocBY+ZzzeQcL+JjnsqrL15yraxCMbDHt5z8HStll31YkXFu6HlpfbxSoTwRuEEwqoDnzZzP6iFq3fyFcvccX3YegZt2YAO9Q371KphQgJp7dYvaNboXuy3ZIvswhqE6xsVBGYEIk+PEX1H4Byks5RSA6yEY2euotAB7dinD2QRmOrKcvXTL3+w24LyEYalqffwmexPDA1Z+LvNXrqFNYKR+MNogZYyLIQFcv+XpQv+oJ0HTOar8BTJk9D0hRu5T/Bj1lGA69Nnz3iMuALvPWwmW8xHBrZhNwoEZQwau4Atv7CWGC1wbyjXsDfjh8OZPbKrrDNG28Pz5mO89+ARNWg/lAlp97Z1WX5p+YZ9dObsRRob3FGLawzGuGDVDoJCBCxJ3VrXNpFd5dOPwxISxehQqTB/Nw4eOcVtw80JRHj26ACiWETFqnehU3vnaQnwBKaIE1i0ZhcTTawXc7Kr/N2hIgP3LR0BiSAua7Ycou37j9Ff125RobzZLciu8neHO9enBT7RsWws1o0n3g1P76kASfns4puA28DotqdijC17jubDO/ZMrCNbZFfnfuPpd0PLYvfxSoTwetEEKrJrTowQdAbfTFgkdRRYVeYt30a7D33LH5hLf92wcGPAR3HklGWc6cod2qCeGKPC6cDhk7R+x5dM7nF46Bo0mfp3a0pdg6aQu3SPzcnujFG9TAFVk+etZ0slBPF1F0V2xw3qaJJ8Uu4NX26cooVImPf5zG8XqWGHYayMYW61hv/t8ZO/MOnVcfX/67k/+bbj5cswunbzn9csu7B0t+09li1PuhN9wG9x5/5vaMXMYIux4GMPOTidGdKGjl9MWd5Lb0F2lU8/NF4RnNfZvxbVq1ZK29IBrmlTp6CWDSuR2mPaNanKFtjjO2ZpIfSqs9hzGncazpZjZdkF2YULEHA88u1pJt8IrM3xkR6pO7jdHDh8woLsIhkG/IlTpUzKrjnZs72r3d3IU++G+UKQPVXPnvrvnfv8rv12/jK7/+FmwNyN4f7Dx9Su9ziqUbE4Na1TTsu7GBXvhpaO+2glQni9ZOLWbf+Cps7f8JoVEBHqceLE4UAlnQXXVH2Gz3zNZxcWCliV8+b8gCqUKqizSfL0GC9fvcmndpUMAqS3ebcQKlogB1954uOE4CFYSnUQNIDVb8Rsvso1J7uQwEG7EDM310PWAS5IYYvuo8ic7KJeKEWANK2fN1xrNiTU/c2JXwjR/9A+VgVX490HTaOJQ7tQ0YKf0N17D+nXc5dp7daDVKFUIapctojLGLftM47y5/zgNZ/dPy5dpSkLNrCMFyywOgt8W2HNMdeqNr8NgUsAsiPuPPANByg2r1fBwuLuTF+gw6syVtnyzUR0PoJpTh9cZCKisECjwG3HlYJrcczZ2EEd+XGQXgRhwmIPq7Lud0ON0Z527oJVO+mHM+doWkgP03CMjlG1acvfHe9kydrdLfz9cdjHwcpIwK6n3w3ZU/XvqbjxgBHB2mf34aMnrFbRs119du3QVVx5N3S1HdPqEcLrJTOOaypcVZtfeYOwrN12iDbOH0HJk73FPm9fHvvBrs6ls0PBiVWXILsjbTsyRlh9IC2ky91g7IxVHBA0pHdLJgf4/8mTvkVIYwtdyYJ5PqK79x9y9DhO9EYLXA2gpaxSUyo/MAQmoQ0UEBhYRtO9ndJoc7xmfv79koXvrCKfc8f15r/rWjcgILCCIN1vtRb9qVndCuwvDKuuIrtQU4DeaqNOw/l6sGf7+rR1z9fs8zuoVwuXxuvJdYpsUpBbuvfgMdXwD+IEG/lzffCa68/iNbvZGlT2s/xUs0IJmjJ/PXVpVcuQ65E930yQGlgrYQFFwTwgJSrcduDz60rBTQSu98uVLECtGlXmwwhkp+CegiQg7ng30E9b/u74Ow6K2T/IRK0bVdE2RlRkz98daieIZ4AOK7SPQXaHTVzMN0G4rne2RNW7IXuqe/ZUJEpxJFkRXB90GUscfTecXZvy+/8QEMLrpatBkV0lEaYsI8j1DcuaLkFsDB+b/dJ1e/jKFJu/eQEBhW4vJMt069haj1HJToEIThre1WXrlXn/sSHNWbqVFq/dwzJaUGlAwfV7quRJOSJ39ZaDhIAa+E3rLLaCHmBtAtEAUenYooZDm6ozfTK3tIJ86lw3W/Z8Teu2fUGLJvenO3cfcDDgiZ9+Y99MWHbRHtYSFEaOfneGrZYQp0+VIhkhg5EOtwMQGBAz69sHWEl+/u0ipU+bypD2MVQEQM5h2cXBBLJoOFCgqHdRXW0+efqM30MkNYFVP1bs2Kxc4Wqx5ZsJ38mOgRNo44IR/A4qsgtf9KG9Wxqy3sOHGNJauCVYPGWAqe/ufDes/d2BFbIUYm1tXhTCB0WdY7Tl765uepSbiCK7P/92iRZM6EfJkjpvNfeGdwNYyp6qd0/Fu46DaIt6FV4LAJ65ZAu/94NdPMhb7xOOvBuu7i3y3CsEhPB64UqA+DauVazJLghh5c+L0LpthyjPJ9loSG9/LVH4INEdAydaSEBBZ3bUtBWsaICP+oOHj01R+CBVeKafATcL6zEqsvtpgRwEKShc7YJ04HpVR8HGBAvuV9/8xH6ukBTCiXr70lGUMEF8qt9+KGcTQ3Y0BLvhSgsWNCMFcj64BlNXY+pqtZN/Dbpx6zbtP3yCpozoTrmy61HhwDU0kjco8ml+faxj3YAY9Bk+iyHp2a4e/fDzORoxadlrZBdX09AfBmH86dc/tPktw92mUcfhHFBlLqsH95zQqcvp9t37LBZfrXwxTqet3AScmUO4YjTpMoLXXZWyn9LqzQdpx4Fjr5FdBJFBrWLWki2UN0c200HKmbYi+y3ILtbQ1BHdWJpNJxE0bxvvBkg+bj0iezdwg+EXO5a2tNIgu/CzXzE9mA8r7hqjGq8iuw2ql+EDpw6yi7qj+t1AH2RP1b+nTpq7jr+BG+aPsMicCbK7fvsXtHzaQMqQLnVkr7JL/279bsDtaMvuI4SDdp2qJalMsXxcLwJeEyWMr8VA5FJHfeghIbxeOFmw9MBiBS1JWz5vsFrUah1MA7o1Y6uajgLpJeWXhM0bGqF37z/iKHlcTeNlgx4rIlhBehSpcrVt8zEqsgsNRAjxQ0oLVmUECB3dOsMli4utfqGdKs3606H1k9iSDTIB9wMkL8CHFu1OW7CBjp/8lTO1DezR3NXh8XMgoKgfV2O2/AiRoheR/5CF0lGwLmABzfVxFretG1jMoSICq8d7GdOx2sUHmTOaLLuK7MIFRxWd4vS3/rnL/rrKZ1cFCSH4qXaVkqwugoPMJx++T22bVHUJVqwFyFvBHxOR/AHtG/AaVJZdkF1kXzIn1LqTN+BA1m3gVLeTXQVQZO/GX9f+Ziss5n1kYGtDrhuqTeUT7Smyi6Q+jTsPJ91kV40nqt8N2VNfpT3Xvafe+veuhV+3J8iu9bsB8jtj8Wbq0qo2vZ0qGc1fsYOTU8ElD1KNHVvU1JKu26UN04ceEsLrxZNlL8ADARe1Wg1kX9661UppdaAHHLDeBgydSbtWjLGI8MdVJ9IhwpdQF9G2RXbRhz/+vMY+lKOC2nGQma4UvUgnCc1T6PRinCC4mxaO5FWgZMyQbnnfmgna3A1skV20B61l+H5CLg0+y7oCr6Ji3YyevpJ9eWHZVWQX6Z4R3AbZLchDBfdorkVey/yVxXV/pnfSWWjH4sPv330U7Vk1TtvbrXSVrcku5hC3MTigIZV0YJcmWg5oGMPlv25R4XzZTVZPuHK0b/bKZxfkKjwsnC2/uvzd3/RuQHauVa/RTHR1Zdg78dPvlCFtKgvLrjvHiAPhgSMn+ZZMWXYxf/AbTpokERsZwsPDKWOGt1k3W1fx9Lshe6r+PVWtBQQDj5y8jFbPHsIGKfO/Hzr6g7YMiebvBvZPZBDFbaSSMMXhDe/j02fP3aJLrmvte1s9Qni9bUbM+oPrWZz0WjeubKHxCsvkk2fPqfxnBdj/FIoKOmWS0CYHegX4m3pj7RuqCza0s33fMWrTuIrJPQMvc4vuoaxoADcE+Bf36dSICYXRoqww+786wRHZOBlDYgZkt2WPUWzZhT4xMkTBNxPX50YLyML9h48sgg0VgYBUE5JW7P3yO5o2socWWaaoWDcg9ZnfTW8iu7BQIrCqQ/Pq5F+/Ers2wPK6ZvYQrVeAuAUYFdSeA8vMC66uzT9IRucQz+PDAx9wZdmdtXQLrdy4n11voNcL/VccopbPCOYkBzqKuuKH/y6sOaFTV1D/rk24aliV48WLw64XOgJn7L0bcGNAgNeAbk1o58HjnHzE1WA5W5h4coxo39yNoXeHBhxwiXWaIlkSxhRF7T065tDT74bsqfr3VLUOug2cwrKEjWuVtSC7wWMW0vwJfbXEKVivOZBdKAmpgE78O3TJG3QYyv3QkV5dxzr3hTqE8PrCLP2/j7Y0XpV7A2S2dGW5gpxX3bZDTMFxtsguTpaORLE6C68iu7DCwE8UBaoNddoMNrkiOFunrd9DbQD6rlBLgN8mCDbILlw24NoAy0+VskW0B+qhL7Z0c5EQBD697tA+9tS6UTiDNEDyCRs0FABUgbbt5b9uuqzWYGse4buL9qzdT86ev0zL1u+ly1dvUdkS+alZvfJaSKHqAyyRVZoFsj527k+ymrqGj1ONCsW0XPmjUrwPUGpBgNWFy9eox6Bpr6Uch399woTxtY3P/N1QfuHQr8X7gNulbfuOar0+9fQY8T4g4LJN46psjUc6buvbLFh7Hz5+ot0v0pPvhlqUsqd21/HJ4Drg0gON58nDurJbHCy+5mRXlyKOeYdHTFpKqVImY1lLRXbdlXFSG1BeWpEQXi+dGOtu2UtogOAySETpDH5C27sOHidoY8LCeurMeZPPLlK+4u9fffMj+/aCaMNnVEextTGjXkhFtQkYQ7tXjtN27W/eX5CUlMmT0vC+rV4LAgSxQeS9DkuvPbKLv8NSD+ugki7TgSfq8PS6URsysqR9v3uuSZ4Nf0cShYePn9KHWTLqGh4HBUJrGaoFUBmBEgSCr5BSFpZX/PeStbtZKQL+6LoKPnoIILFW9jh5+nfKljmjW+T+IPcGtyJz/eMNO76iweMW8nsKd4pq5YvqGiJjW7lpP/art3XFr/vdQMc9PUa0maN0Szq2faZpzqDNjUQZCAaCVR3axAjq01FgmfPUu6EOTDjMmxsQZE91fSZBaKH6s/PgN5Q9WybOQKcsu+aKODoTG8E1DHOIlONwX+o7YpbJjQFrFbeDWKslCuW0OHy7Psro+6QQXh+ZW1hy56/aSa0aVrbQeEVwGT7mIJ4osMAoDVijQ4PlCFas0AHt2WdXXVPDrxbXqEgs8ErL0tLX19V2cRW3++C3nP1JFZVSFhnKlGKDzjHierNI1U4WAvSmtm/dZj/iFvUraFMaOH7qV04njWh4VWBBR3IFZCjDIQJFlwU9KtYNrsaLVutCSgfY1nrY99X3fFDSoUUM/1qQT7j2IHsg3ByURRJtI+tcqTo9ta1T1KkSfny1aarN9w3rClHctSqV0HZYghsMLJPLpgWZIP28fi8e60dZMzHJhxawit529T1Uzymt2sObp71WFT6wut8NNOLpMeJAmLd8W4t0yrDazVuxg9bOGcqKOBt3Hqbl0wdqSbUe2buhe93Inqp/T8U6RdKbRp1GvEZ24T9do2IxdnXKl+tDbZJluHVZs+Xgq8C1lrXYjQFEGOpKmTOlo7w5PjDdBOnMyGh0D/G254XwetuMONgfWxqvOGE2aD+EShTOTT3a1dVyxalE/7ERl6rTnX33cNJUBfnGcWVcvUIxB3vu+M8U2a1XtZTJTwnBQbVbD7IgNI7XaPuXCDo6ffYCB7KZZ67C9ePKTQeYtOgKKLPugS13kb1ffk+jp69gmTRYEXQWT60bkIYZizZTcM8WlC/XBxY+rbD0lm/Uh11WdPqCAqedB47Tyk37mRTCNQUF19Ol6/Z4LYuhUVyRBfHmP3eoe+u6lOW9DBbpeDF+BH5CPg1WQh0F8mGQQQvu2Zx9+CCHhAQRIPnAEiS897CZr7k8GGkb2ddgVWrbtKrFfuKud8PTY8Ta6DV0OrsSKb9v/G+FRn0IRB+Wc/htwnKOgD0d5U3vhjvWjXmfZU/Vt6fiRhIucbaChLHPlmsQwDd25i5PRtYPDi9IQNO0Tnk2iNRpM4jjQlQ2SPx72foB9O3O2W77Xhnpvzc8K4TXG2bByT7YJC0vXrIFAlccwyYs5v+vrL5OVm/z5/CFrNt2MB3dOt3C0oHr5GZ1y2vL/qYat96YQbjDI8L5owsfY/gygnjr0OlF3Vv2HGHdXd3JNd6EvTXZhfXHL3ZsJmqQgesfMofmT+jHCQd0FE+vG9wILF6zi3p3bMjSZeYFIv+ffPieFh1p83oPfn2KgxwXT+5v+jOCMGFRhiuATh87ZY078t1pCglsy8GOqoAQgoBCHk1nUf3HeMYM7MBuIjVbBbO0HWQFIV6PD6yuDFC45YFvuY73zFEcPD1GtIcgQ1isp4zoxpHwY2asonv3H7KCCqT+oEWOVNI6ggOBg713w13rBm16454K4nb/wWMLjVtH14mt33l6T1Vk99Y/d/hGy/z7gdvPciULUpPa/wW4GRmb+bNwf0PSmB3LxljcMOF2CyQbajJSXkdACK8PrgpcUy9as5v8G1RkghQYMped5+F2AD++d99JQ007j6ReHerTp/k/0TJCuBEUrNTeJI2CD+qClTtZlHvTwhGUIH586jdyNg3s0YyjnY0W89MsrLqwJINAQFGha+s69OzZc9bUPbhuogXRMNouPm6QZwKZMM86d/7iVfr6+zPs51epTBHTJmPE9QDuDc+fv+R5w0YN/J4+e0G92tenBjVK0xH4h63cwdepOkpUrBvzfuMw5i5LuWoHpL5Rx2FUqmheVlSYt2IbnfjpHK2dM4QyZkhDgSPnsK+07myFaB8EGOsBIvDuLCChNVsNNPntI3APZBtuPyiwULbrM47TIr+bIY22rth7N6CNvGP/MXon/dtUpng+LQoVUTFGBDl+9+NZmjK8G2fQKl23Jx3fMYv3Acxrz8HTqGbFEuwPq7O8ad2AGL//bjotrj/etqcqTNOnTa1NZciTe6oiu2fP/8k3cdCmV+XA4ZPUfdBUOrBuopa5s15vUDb64tgPNH5wJ9M/KTnRY9tn8MEMtxeuJN/Ruba9rS4hvN42I072RwWXzRvfh86eu8xpXQd0a8rJAWCV0elqgAhV1AsfIfx/fBSUBRKi9LDmrZs3TJsVREExfNJSwuV097Z1OZgO/lGhQe04q5hu4oIMb7sOfstkQZGzucu30ZT5GxhLEFRscKtmDabHj59ywNTk4V05aMrVgg8eAg87tajJuqq4tobFoEGNMizlZcuH0tW21HOeXDdoE0Feo6etsMhYhA15466vWO4LhK1t46omywQCFZG0I3bsV24JzhSkzJ2+aCP99MsFyv1JFmrXtDqlQFDXyDnkrmyFsMyNmLyM5ezMs8DhkIGAxKPfn6E8ObKxRJsOQoxUzYPHLaKSn+amzbuPsBW9atlPmew27xZC9auX5vWks9h6Nxau3kkTZq9lyUAc1q5e/5vmju+jRd3A02PEezhu1mqC7zIk7ZB4ZOfyMfTi5Usmu7FixeZ3Pb4GqUI1L/bWDf4dtzw46E8P7cFScDpLVO+piuy6A1Pg5Ik9ddDYhXTpyg2aPSaA3V7ez5Se6lcrZQr4hl61LjcY67nHt7d262COrymU9yNatekAa57DDa5U0Tyc6ChkynJWkcFtr5RXCAjh9fGVAOJ58MhJmhbSg0eiMiZBWWDNnKHaAtgUTEgX+0qh4R225iBATgW3TQ/tadIh1GnNA+nL8dH77LuEooK86lQpSSP6tdY+gwhkUZsE8IX2KXxClT8tfH6x0R078bMW0W9Yy+EziKsoRZynL9xE0HkdHdRe66FFgeXpdQPLy9ffnmbrNVw2QAS7DpzCVnv4oCmpqCVTg+jmrdusjWqOuZFJ9lS2QpC/jOnTUIVSBbm7uJmAFnHKFEk5YcSp0+fYurxy5mAt7yXGtX3fUb5uh58t3BuauYnsKvzN3w1YmaAasWJGsEl5A+4jkBGEsoGOEhVjRNIbCP9XLFWIEiSIx1kn3UXMgJH1ujEnuyqttA4szeuIyj0Vc9pt4OTXMAX5x2HVPEujq+P2xJ6qDkZwY4CWNIwiXxw9xXt4+2bV3aLJa44HFE0CQ+YQ1FKwBwzq2YINJirRUZK3ElLJInn4JlglrHAVz+jynBBeH59JuBrUbTuIA9Ua1/qcLa/wuYOVSVd2ssggQhpWyE0N7tWCQGymLdhI8eLGoYWTAiN71KF/V7JknfxrscC/kmEaE9zRdH2K69a79x9qtYTASlCuYYDJeqY6i+jYai0GmKJlHRpEJD+CDi+CvPp3a8JXYAgWsg4Q1NGOqsORdYOARQRJuMN/E9YIEGBz8nfo6CmavWQrIc210dTVJoL2Msxk2Z0zNsDkY+fubIVov1nXEP7QmMvdwf0gebIkJk1NXXOqAlZxCO3epq6pWhw8ewyeRn06NtQeANmwwzCOSFcHUTSK9hA5bq4k4ctjRGDiH5eu0awxASbLLojZ2JmrKct7sOiV1jU8Uz0nT59jK/388X2ZwKiC9wK3AzqUTRzZU931/sNggMQ/S6YOMGm5K0wRn6FLmtHTe6r2heBghZAPVO535lk9y5YoQPu++o51gncsG63NT9rBbnnlz4TweuW0ONcpfLx3HzrOlkjk2VZkFzImCRLE15KhzF6PlEbgsL6tafn6vRwxjtS9dauW1EqU4Ce4fseXNGPRJg4uMye7uBqv7j+Ao9bxkdBVUG/usq3Zh1Yl9bAV5ayrPVg74TKC6//ALo1NahhDxy+mRrU+105Y7K0bNR4InkPjEXJpOvyyVb2wvuQp24aWTRtokSFNWe51pq6OiqxzGCeuHEvV6UGH1k+2+NDgmv7SlZucxEFnQaKN5t1CSfnvKfLZod8ESpcmJY0e2F67qxGCvAK7NqHihXJaDAXWe9yQwJ9aZ3IaT48RJKxwlU4WNw2KmH157AdaOjXIIvW6rvlE4BEyv+EGSxVYnZEJUlfGSdT7pj0V/+6u9x+ZQosVzMmucSjuxNTTe6quNeBKPfZS2EPysk7lktr3HFf6GNXPCOGN6hnQ1D4sPBNmr+EUvcqya2uThNXSFb9Ie91kx/zDJ9l/EJt0/Pjx+Bp3+7LRbH0Ficn8XnotVgls0IvW7OIrcOvUrbjWAdnWHRQFC8+5i1f5ihYBgtYZboA71K90RW8jCxusLwjOU2XPFzilL7D48OqaR1vrRrULy8Htu/cp0ztpNa3SV9XgA5ezTCuWgir7WX7+m7tSV1t33FNZ51SQ564VYynTO5aBYzhI/Xr+TwoPC6ePP3xfS5AX6oRmNvz3ofEMS6s12YW7E9wN4P6goyDIi5OljOplMYZ127+gqfM3cLrukp/mYQu3jtsmR8YIlytIRemwggIjRMLjsIeAQOybsOyak12dqh/q3ajZciCNCGxjuhJX+zhuuFTEv66ApDftqe56/xGIB5eKScO6Uq7sWdhv2hxTrFMkN4Jfuo4U3Z7eU3W8W87WAa1xHJQGB/hT+ZKvXKrUvgrCC313uOR1aFHDpPXubBvR4fdCeKPDLL5hDGqzxBVxobzZCX53SJnZqObnWkaOD0zihAlMwUawRkJ3FRHyY2euYr9F6NsWzpddS3vmlej0E7bXOXxYIFkG8XmcoJXoN4Iu4LOFFMTYbPzrV2T/VHcFCCjSu3/NBE6HiqvxGhWLU86PMmvFFWNJmCC+drkw607C9QZJFHq1q8+HpIGj55vcGOCLuu/wCSaEJCTNGQAAIABJREFUsObDcq+jOJN1Dh/dcTNX09A+rVwOMoPaB3y9kRhCSZYpST1YPxH8FC9uXJoxqqcWSyGsWQhUgY/0w0ePKev775gsuxiPf49RTAQnDe+qJagMhy7oRSOzHXSAoV4Av/N1275gMgM5PZBi/Lu5LrKRuXzTGPF+wo0ErkAdW9TQYl2G4P+Y6Ss5kA2kHX7ZyrJrnllLZ/AsFHcgi9anYyNKnzYldQ+eSuZkF8GDZ89fcUv8gr33H/vdwSOntFkJccDFHnDo6A98K6kwVev073/vUVD3ppzgSGeQoPna89SeamS9O/Ps3XsPLfyfVQp7KDkguBW3dXBv0K1s5Ewfo/q3QnijegY80D4IRJq3U7AVEn53/g0qadu4zLuvgnTgsD953jq+km9erwJ/eBBYB/9bXSl62QraZSRHTZtfqcLFAokHYPEF6W5cuyyPGwQDOLjqvA/3EHz8kOEGV/LwU0QBmYcVYuTkZZT1/QzaMrLZWhbQQoa18M69B1SiZjfau3o8R5PrKgg+bNt7HOPWtXVtU7XuUhrAYQz+3tCUVW4MUGzoO2I2C/0njB+Ptu07yooZOvRsHc06pz66pYvm5bS6KoGFszhjncxdvp3dVJZM6c+yXYisRppe+NnCYggXnYtXbljICznbjvXv+42YTeEREa+R3U8L5KA0qZITCBNuSXT5ZkOyD/vLnbsP2MoMTWB1EMOBsXyj3qyLrPOmwHqM6jq3k38NunHrNscx6Ey3Dqs15tGa7LpL9QOYLl67m0nhwB7NTZZdzN3keRuYJMKS16ZJVW1prO29/+aKCtNCumu7zYJPMuYRKge4nTN/7+pWK0WrNx8gpLJ3h/KPemfcvacafZddfV6R3XGDOlpk9YSqUMMaZbRL67naT08/J4TX04hHYXsQpe8SNJkOrpvkFkskIrbXbj3E7g0BHRuYrhWxScO/GMEIuOLU4VIBTcnJ89ZzZKpyY8D1KogoyNLnxfPT8g37WMMSmakg74PfmesWujoV+AghUG/3ynGmthE017b3WLdIiFn3Ex/e02cvEmRvdBYQQkhrtWpUmZMYoLhbacBcNxMfwOotBpikddD+tr1Hac3WQ9q0iM3xspWIQxfZtW4HVipc00IObs3sISZ9TLgY1GkzmL7bNVvbVMJ/GJHuOOjZGg/mFNefR7fO4NsCXQXvBd5Bcz1SXIsjdTdSMKdKkVRXU+wjrcZoy3cR6wbvP8i3joJ349GTp+ze4CnVD5AWHArVbRz20dlLtzLpxq0H3EZg8dYVHGzr/feEfBi+B/beOxho2jWrpj2xkaf2VB1rz9k6cPNZqUlfNsaYp7DHuwlXkr2rJ2hRiXG2X97weyG83jALHupD/9C5rG3atklVbhEb3JnfLmrz6cNpHNawArn/8xFUmzR84HB9BSsCrLI40essKq3i2EEdmXCjwMKGBBxwM0B089SR3bVcc2LTQDYrc7cQfJwQ5IEAL3wQI8LDtVmzzXFScjsThnQ2BdLhKgspbnVlZDNvz5NKAzhEIODR/FACXdlarYK1EkKM701kF2tUzS+s3boK3j/oqZpbVkES4S6jVA10+Waiz/ZIBEgUAs5GBbWjogVyaPGvRXuQ8sK7Ae1aCN4DR/w3XGTwXur2d0Wb9gJ14Go0Zf56zpQGn2Vdvv22yC764W7VD3Oyq26psIZx06Oy7Olap6oeuKx0C55CYWFhbC1XrgXwwT/6/c+vBSu62r5ap3lzZOPsoOpGBS5IyO4JFxWdevLW/fT0nuoqTs48B5m0ZEn+O8yqGAl3ydw507eo/K0Q3qhE34NtY1NB5qAjW6Zxq/ggIAUr/Pxw7aEjqMR6OLY2aQSBPX/xkv0adZYl6/bQse/P8NW4KvggwKIdO1YsbWQXdUNrFAR7SIA/N4VrMWS2atu0KssUYdzXbvzL1+G6C1xD0D4+csp9Y/Pur5nkD+rVQmtmHU8rDSBAKMdHmalB9f+knkCC/7r+D1uzQeyfPn+uJSDJPOscXG6sySEUASANN6iXv0lX1+hcIivhzoPHadaoXuTn50e7Dh3nK11Y7HBI1C0WjzUKn30EsioScfPvO9Sieyh9XiI/pUyehPcAnZH/IPVwJ4I7CLIEQj97Gg6aCeK7Jcvdt6fO0v2HjywsgPhbq16j2Qf0yrW/2Xdx2sge3BejJSpUP8xvyMwtdmqcui31CiP4Ek+cs442LwoxWQTNFRXWzxvusn+7akO9dzhgwo1j5YxgNhSAbM9YvIldOrYtGaXtwGJr/j25pxpdf64876mAYFf65ulnhPB6GvEoag8kCYkSEK25de9RqlGhGEtdfZA5o1t6ZIvsoiEkVLj34CH7peks2JyXb9hvspTZsuDpag/XtE06j6APs77Lkk9wMUDQWr8ujdnPt1KTfrR06gBD2dfs9RX52ZE6GmQULirwkYZ8kW6LOdp/k9IAPkg//nKe/QdxaNJREL09fOISJkjJkr7FawUSbbCaI5EKDksgiv27NtHRnKkOe5ZQFXRmfkUPV5Jc2V0LFARmg8Yu4MQtad9OycQQiUWgVOEJsXhFdhFchiAzFOVScWj9JItU2q4CDEK098vvCfJrn3z4HpX9rABFRJBbs9yZ99WW7yL0WOHTC1UQ3cXdqh9qH0XQ2sGvTzJxR7IfuDLATatW5RLaM+opjHYeOM4+9LNG9+I/2ZIPM3ojETB0JqV7OwUbB6CAAW3uhjXL0NY9R+nazX9MmTx1z5t5fZ7cU905Dlt1q6RQyMiGFPYxvQjhjSErAFHwcDloUb8CVStfzHTdAX8fWECu37pNJQrl5KtcHWXlpgNUtMAnFkFiyscWPsSQDtJZlPB+zuxZqE6VzzhYCFdxyo0B5A0ELUumDFoEuB8/eUb4kCIFMILxlNQTVCrgPgHyiwLMc3+cRYt7A6yS1f2DKE3qFNSsbnm20inZHncpG9hSGkCCiNHTVvKtwP0HjyjXx1nYX0yHb7bKbIdocVz/D+vbit7NkIbgIw33il0rxmgn9536T+KkJbAuKUsoPu6Q18P7oMghMG7YcRhbvIz4oyLgEiQ7zydZmWR6QizeFtnF+lQJCMz90XW/lyqls0r8gXVcq3UwDejWTOtH2F6gDlI7s3xaaE+dQ+PsgL2Hz6SHD5+wNBuIKAr2BqQKNxo0h0M7srwFdmnC++jo6Stpw46vWPEGwZ2Qgeza6pVcmjuK2lPzfJKNU1Vv33/sNfkwvDu4IXQ1GBjfH+yXeO/wzu0+9C0dP/krJ/WoWbGEVh9zWxhFxZ7qjrl6U51IIALDhBRJLRxj1gA2L1ztw7dOFVyJI8grc6Z0lDfHB7R22yHq7F/LJAiuE5zDx08TBMfd6UOEzQtyVrgmhnIDyC78zpDZB/JIuNLEB76Tf023ZEiCVQvap9BehQVm6oKNdPL0768lWDCCq5KzMq/DncoG1koDYeER1KjjMCYPuF6F1bJ9v/FUqXRhbesGdT599syUFQ0fwla9xlDVcp/yvCH96KrNB9gXVsfBCR+Edr3HUVCPZibtU6wZXPdvWjiSCTZUOjJnykC5P8mixQ9czZ+nxOLh3rD74LfUsmEl09JRSVTgX69LscF8XXra3xUBkE+ePLMI1FHJTHBLgNstncVR1Q+dbeKG4crVW5Tr48x8EHR3wRgPHDlJg8ctsikfBgsifG8b1Phc6+HF3eMyr9/Te6onxyZtWSIgFt4YuiIQfVunzSD2fYNEEYoK/Pp252ytPlOeILtqGq19M3EliOj4BRP6sRUC5KZs/QBaNXOQSTtYxxIAKUOmK8hnXbh8jVImS0IF83xE2/Ydc0uaVdVnTykbqI8C/FrhyoFUtarA0v31d2dozMAOOqB8rQ7oZUKiafboAFq5eT8rN8AdYPvSUS5blqwbQfBmq55jqFKZwuwbjYQbk4d3ow+zZGRyPXPxZpbW0uW+gfajUizeXsZAnSm6o8Lf1Xxe7fkuQgYPtxK6klOoNu25UbkrRa9bXjYbleLgAl96+IJby4fBFcEd/u6eGputdjy1p0blGGNq20J4Y+jM44oPQUI7lo2xkCiBXBGsd9ky6/HLBLywlMFX2DwvvCdgB/nNV6GdyRqp2kTWMqQKRvpjXQX+tI07jzBlnAMxQoab9k2r8xUk/n37/m+ob6eGWiXhPKlsAKw+q9XtNb86uMtAY7azf01dcJrqgStK1eaBlDN7Zrp0+QZrO+OWAq4iiOhGwWHDVa1c8w7DzQDR58mTvkWF833M74U12dWtNBAVYvH2yK67UnQrjJ3xd8W7a0Sz2x7ZhVtK+UZ92E0F0f+6yptiBtyVoldX352px56/O5LI/HHpGivw+Hrx9J7q63j5Uv+F8PrSbGnsK6K3vzj2g4UEFEgwggiObZ+hTVxcY5edrgrqCZC1Ob5jlsnPTVm2h/ZuRYXyfsTWiY8/eM/pum09AAu5shqdPH2O4P86PaQHTV+0iXbsP8Y+i5U/L6yFnKn2I1M20DIws0ogM4VkF11a1eagtjnLttKGHV/SlsWhHPWPK/qffr3AQXw6ClxQug2cwgoYNSsUp9h+sVlSC2L10CKF1irW8ooZwdozMtkiu/BHxXuyYf7w11IGGx2vo2LxIN1bdh/hYEVX/DexTg8cPkFN65R/rcvuStHtjL8r1lDvYTPZgp8oYQKXYDXXd7au4OffXgXU6Tgkqbqtb5bM23RXil6XgDHwkCK7mJN1c4da+LvD5Qg+6cg26evF03uqr+PlS/0XwutLs6Wxr4jyR9YnRG+C+K3adIDGz15jEv0//esF/rDj+rpsifxaPw4ah/HGqpS+Ymj/dvRpgU/YZQPWFnx8Z40O4MhtZLqCf5/uAusukjcgrSp8T6F9jA+F7jzxb1I2QKCC7oDE23cfUKfAiZQkSSL67fxlvuIcPbADawCr1K4I9OraqrY2nU7zuYFqA6x3jWuV5RsKqDcgQBD+jEYjxs3bgZsGUgsrNwZzf1S4PcCnt2De7DS4VwstS8dRsXjzfswd10eLgLy9FN3QQIY1GK45Rouj/q72fJqNtu+JNOTmffRUim6juDj6vLllFwdapFjHjR0s2zj0Ip30xgUj3CJv6Wgfdf3O03uqrn5LPZEjIIQ3coyi7S9AagND5rA/5HsZ03LWsjw5slH3QVM5DW+9aqVYTD7JW4lYPskXC1wJeg6ZzlZcBHd9XjwfjezfluLFjctX5SGBbbW7WsAHtFqLARw8E9ilsSmlqnmeeOgQl/ssv6FrWzUftpQNXr58lf7YHQGJIF1YOwnixzWl/FVEBeNKkzo5W7WxpnTqLeMAA+su0ivDeg9pO5VW2h0atiBJCHSyl1kLig39uzVlNQkdJTKxeHtBYEbatpeiG2S3ebcQPljovPpXfbXlAqAOTNBcrli6sJFhWTyLQ9LoaStow/wRJoUWHI427vqK9wTsb20bVzW5cQETJOhxxXqOhu2l6IV/NLIG/nP7LpUplo9qVSrhM4YEyD7+9MsF6tOpIbsuQOe4UN6P6Yefz3EQp/J31zZpUVyRp/fUKB5ujGleCG+MmWr7A8WVG+SRUAaNXUiXrtwgZT1CxHy5hgE0Kqi9tg+7pyFH0MjPZy9ymuH0aVNx8zOXbKFLl6+bMkBt3fM1Wwnhb6uj4KOJgCdVzC0kyBq0dtsX9MOZc7R2zlAtPr3mygaeDEjE+GxZ5WDhKlS5Ix1aP1mLDBzaUS4q3VrXZiKGDHrm7Sd5KyGVLpaP3SlAtnUUeyRTBSk2r1deKzlTfbb2QVX9APGAO0m9qqW04GorRbciu5Ci6tRCv1+2PbLbvu8E1iTGIbV8yYLUtXUdk+yekbmEewP0XXHdDjcGWJu7DpzCSioI2MWND3xQl0wNopu3blP3QdM40DR7tkwuNWsrRS9uejoPmMQZw0B24S7zfsZ0NLRPS5faiOqHsKd+c+IXlrvKl+sD7e5EUT0+tB+Ve6o3jD869kEIb3ScVRfHBAtTsepdaPOikRYJKUCC4Z8Fi290KLBe12wVTFsXh3DwEySooEOMzEzukGeyF+gBDcsqnxfRnjbTkwGJSh83dEBbJimqIHtRt+CpnH65eOFcVKZYXi3WLBA/pT1sTbbLFM9He7/4nl0d9q+ZoEXD05bSANoFQcIYYTV01RJo712yFos3J90jA9vQkW9/otlLt7pFlB8uK/XaDWbdVXOyC2v3+UtXTbJtRvYBa39X6wMTDktNu4zk96J1oypGmrL5LFy3QIBXzhxscgmBtvTsJVsJEfpINKJTpB+YIhh4UK/mVKNCce6T0riFX7+uQ7Z2oKRCEwKe3FMFdvchIITXfdj6XM2w9lRvEUSHN081aY2CCOIaeeXMYCbBOv0kowog6AHf+ucuPXr8hECSkAa174jZtH3ZaCZTuqL+MT58vOu1G/Kqjc6NTKQPf6/dehBbmHGY0FkcCUjUNY8gL9AGRWpcVVTwFdxgUiRPQtMXbuTr4qDuzXQO06ZlGQ30GT6L/U5Btt1RIFG2fseXtGJ6MN8YwNL1y7lL9HG297S5xyixeHsWZpB6WEp1uxrBx/3Rk6cW9YLsQl8aVnOljKELV3s+u8gMCQusedQ/rKKVyxSh5Mnecrl5uMXkKdvmNW1spdeL1OQ6yS46Clk9HKpxm2N+OMK1ea7sWbQq4rgMjDz4RgQ8uafKVLgPASG87sPW52pWAv8ggS3qVaCDR05RyNRlVK1c0VdXfy/DOEUorHWwvvhiwXV/407DqVTRvCxxBWUBZEfDtVzNisU5yCx06nJWAXA1e5A1LviYImhORYWjD92Dp7L8FQiv7hJZQKJuf1fz/ttSGlDuDV9unGLKkoa1dP3mPyb/ZmcxsKdhe/nqTarbdghb75X7irN1v+n35mQX6Y8Hj1tIv/9xhd+Hg1+fYlI4akA7LdZs9AOqGGfOXqTVswdbKBYMm7iEIsIjTFfiOMCBBI8e2N6URdGVcaPe995Ja0pQocguUmij7jh+fnwbgmBBHQWSdoghWD59oKk6qH/UajWQ/BtUoia1y/LfsV5CJi+jetVLUc6PXEvtjHqwx+Us04rTDMN9AsWehJmO8aEOBEGFTllOWxaHvLYu3JGiW1e/pZ7/EIhsT8UtHjTKcTug67sh+OtHQAivfkx9uka82MFj5hOSRWRM/zanIm5cqxyFhYcz2cXVDnzboDwAFwd8AH25/HX9b96okJhi3Kw1dP7iXzSoVwsqlDe7W6zZILs9B0+jWLFis/UKmeDcUWwFJCKqWlnU4O9askge8m9QUdsGDYtci+6jONUoAvZUgd8pruDXzxvOGrrq4PTixQuaFtLD5eFba9gq39MW9SpaZBRzuQGrB2EdHDV1BStugEzjoIQxQyoNSTGSJU1MLXuOpsa1Ptfm14uEGEGh82jhpEDTYQE+qa17jaH184ZxMOadew8ofrx4tGXPEXZFMPJOIuCyRfdQatWoMhUvlItVTczJrgoss3Z7MoIxblygi4102YgnGDhmPt2+84AWTQpkP21YdiElBncOHQWWVbik9GpXn+LHj0cg3cqNwR2p1rFukNSkTPFXh2w1P+5M0a0DJ6nDEgF7e6p5MDJuB2pXLqn9lkDmQg8CQnj14BjtajGX1bG+VsVHAR8J64xbvggCSAt8E6/d/IfaN6tuIvHuOLHjw9c1aLLbya75PJgHJJpfH5ctUYD2ffUdBY9ZSDuWjdYSAAX3hp9/v8TkRRVlPZs7rjf/3R1KA2hLkd0G1ctQxxY13L4UYYUsWKk9fbFhMqerhioFSC9SWIMA60zCgcxyqB9Sb1eu3aJFa3az+kWVskUIB1SQX1hDdSVSQZ1oE76ulT8vYrLsqvWjAssqlCrEAXTmPtWuAI/2eg6ezu/gzb/v8E0L3F8QSOuuLHd//HmNpi3YSMi6ptwY3JlqHemwYT3HgXrZ9IEcgOnuFN2uzIU8EzkC5nuqdXwGDsAIiBwS0JJKFc0TeWXyC48iIITXo3D7XmP2CArkynDdumfVON8b1P97rDJLfVogByHyP0WyJPwv5id2bFp1q5TU5psJayeUBNxl2bU3GfZ8JaEXXKdySSZPuos9pQHcEiydOkBbwg8lV4aAIE+QXeCk3DRO7Z3H0nJIrQxSev7iVVo4sR+nrtVZUP/OA99QqhRJmRAik58iu8UK5WT5O7jM6PLNhovE0vV7OCMZLJL2AsuqlS/GKWeNFlzt47YFVvJkSRJzddZkV7eGtXlyCk8pm0Rlim6jcyTPWyJgLxgZ/ueIhxkS4C+QeRkCQni9bEK8rTuL1+6mA4dP0pyxASYfQkSudxowiRMPZEibmqqVL0qNa5c1dJUaVeO2jvq33sTgP9lj8DTq3bEhpw32xWLP31UF6kBrFm4qHVrUYN1ZHQVX8bjGVVfF5gcnELYVG/dR3pwfaPsowPIJWTlPln4jZjNpx/U/CkjpuQt/sTsFbkF+v3CF+4TkHLqLLbILTM+ev0Ij+rXW2py9w9Lc5dsI8wx/WN3FFtn17zGK/v73Hlu3dWlYq357Ogo/shTdug4uuudF6vsPAajsZH43nUUwMohu/XZD+Fv57jtpqHndCmLp9aJFI4TXiybDG7uCa2pY0FSKT+sUoVA6gKUXPq/uEKj3JCb2Tuyrtxxk3+UZoT092R2tbVn7u6rgsvGDO1HJT3NzRja4NxxcN5GF+I0WrBtIlsHSaS9xQ6Wm/WjKiO6UK7vrQUhG+2nkecj4tQkYy1H2CPL85MP3OShq1eaDFDJlGR8eEODVt1NDalCjDGctGzdrNYX0b2coQ5o9shs6dQW3WbF0IfYV1TGPiuwiGA8+w6rApQOJW2DdtZWi2Aiu8NftGDjBlOXO3RrW6GtkUfgPHz6hp8+fm1KHGxkfnn1Tim7Mm68HBxvFxxeeh5tK0iSJTIGIcMeB/zvcgHAzAveGLkGTafzgzpQ/139uXr4wtujaRyG80XVm3TAua7KbMEE8bgVXg8hktGnhSDe06rkqbZ3Y8WFHximQeRCJ6FBsKSlgXAi4alijDG/YusqbfHbhTlHuswIm+TBEs+8++C0N6e2vTeVA1zjs1YMraqTlfid9atYhXrJuD81fsZ1TdiOARZG1fp0b0/BJSzhhROeWtQx1a8OOr+jcxb9Mbgyw7CIocOnUIEr7dkqavXQLnTx9zkL5wJUGzS27B46cZEWNDs2q06Ur12nU9JVsxV4yub+WbIHW/UMgHlyMPKVhHVkUPg4wfn5+1L9rE1egfO0Zeym6s7yXIVoGB2sBzYsrsSa7qqtIcPTo0RO2AkuJegSE8Eb9HPhMDxas2smC7TNG9TJZqPDBh0YnyCCyX/lysT6xK0UFfOimjeyhPcFAVGAFklKpSV8a0a+NhZICLNiwOu1dPcGQ9dF6TDgkhU5bQUh1bH7VDjcZpLA+uG4SpX07BQcrxYnjR0e/O+OzkndYP8VqdKH54/ta+HzvPHCc+o6YRV1a1jJMdq3xNSe7Sg4JVubCVTrRihnBFtn+nF1vv/x+ia7fvM3yXbBm9w+Zy4laWEO68mdM/lSGRmfrduT3ntawtheFr5Kr7FoxRqt7inWK7ugcHOzIfPvyb6D0gxseWHZVQSAtAhPnje/rctY+X8bEG/suhNcbZ8VL+4Rr6rDwCAuyi+jqsLAwJsEqWlsFZnjpMBzqlqfkwxzqjOYfgbyowCBUrYLLpo7oZkHUdM0jCFiTLiOpcN7srCSAgEdcv48MbM3yXT/+8ge17T2OVs8axMFYvlpABnFL8M32mSy/hgI3hqZdR2qx7FrjAoKGdLWw7JprfyLRwYxFm/jGRfVDF6awhCZKGN9CE1hX3bbq8bSGNfpgHoWvtMkhw1i/WmnCoQb+xSD8OKjpKtE5OFgXRt5cj/Weqt57a9UYXXuqN2PhzX0TwuvNs+PFfcOLq8ju1JHdTZnZkCGqXe9xVKNicWpap5wXj+DNXYOE0I1bt92qlesN4NgT3YdPI7RK18weYiizlRojiBJILizJ+XJmo07+NVmmTJFdRX7xe18N2AEZKtewNyeDQICjO8muwtXaNxv62dC1RZBp/lyvst9BAUF3+uOoWLu2DqHuyHJnPjYcHhC4C8m5lZv3s1wbEmVsXzpKm3412ovuwcFRsV6iqk177z1uCtr2HkvTQ3tqz64ZVWP1tXaF8PrajHlJf5EqE76g5mRXWUeCRs+jnu3qU5ZM6b2kt853A76DSZMk9rh8mPM9df2JBw8fU5VmgSZ/U8sP/bf00y8XqE+nhm7zp7VFdt2lNOA6Ss49iUCVMTNWsQsHdGV1+Ow62gNFdpWlHh9YJI6AL27uT7LS4F4ttEnBOdonXb+z1rDGocjdWe5UYF7O7Jnp0uUbHAgIizks+SrFsq405DEpOFjXmvDWehCbkD/nB6+5L/1x6SpNWbCBRg1oT4kTJfDW7kfrfgnhjdbT677BYYMOj4gwWXbd15LU7E4EYJFPqkGVwdk+2iO77lAacLZvOn5v76Ono25bdSCRQd22g0mRXZWNDZZmZCiDGwkymMH9ARkUfbGYa1h7IssdEop0GziF2jatSjUrFOeEIjX8gzjteIZ0qWn5hn2s7gBfaZ262s4EB+MwAwWdj7K+64tTGi377OieikOckayI0RI8Nw9KCK+bAY4J1eMFR7pOSDNB/F4VvNBnz1+mJIkTEWSNpHg3ArsOHucgJ2s/WgS6wTqBCHJdQUr9Q+dSmWJ5TSl43aU0EFWIO/rR09k/cy3iz+v3oh5t69Gug98wxvA5nTxvPVuWfF0+0JNZ7sznZ8eBb9jfHcG5Q8YvovRpUlK/Lo1Za1mnG46jwcFKRWPMwPb0eYn8OpeS1KUJAdyywAWmQqmCFjUioK1dn3E0Z2xvj+uHaxqaT1YjhNcnp827Oj1p7jrauPMr2jB/hClFLSxMfYbNpLhx4xAsFiU/zUPD+7ZmTV98LCBvZB5o410jinm9+ffOfSph9VjmAAAfV0lEQVRZu7uFkgCuazfvPkIT56zl6HT44UJeq3qFYloBcqfSgNaO+khlkLxCYoOfDiykFy9fUs/B05j0grAhHXCD6qV9ZCS2u+npLHfohcrml+mdNJwWeGCP5lS8UE7uIIhnyJTltGrmIN7vjBZHgoPtJQMx2rY8rw8B7J+NOg5n2b4lUwaY/OhVGvT61UtTpxY19TUoNUWKgBDeSCGSH0SGADboW//eNV2V4rq6SecRFNyzOdWrVpoiwsOpf+g8ypsjKx078QurOlj7/kbWhvy7+xG4ePk6vf9uOpOVfsXG/azpOnpgB/64I90sNIlHBbXXJqQeFUoD7kcyalvAhxaHlyVTg9iPXgV7gaitnzecVRZ8vbwpyx3SO3/9/Rl21alUpohJVQY4JIj/Sjvc2aJcRpCCHBZeRWwV8UzyVkJOGe5fv6LW2yxbwcFos1nXEPbH7ta6jmTycnYyPfh77Jm4VVE+u9du/EPNuoWQkF0PToJZU0J4owb3aN1qvXZDqHTRvNS1dW3TOJFxqlyDACZOQna9f/phlc9bvi2rVCChgipwe/j2h7PaUgKjXkeUBrwfMe/q4cGvT9Hkueto0vCunH0NZO/u/Yfs7wnf0x/OnKMPMmek9s2qU7KkibnzcD9CimlfKLay3KHfSHc8Zf4GvoV4/vwlnT3/J62aNZgeP37KiVWwnkEUXSnWacjNraxliuejvV98z7dX+9dMMGHqSjvmz1gHB6s2oWqSJnUKHuuHWd6loO5NjTYlz7sZAayfBu2HENZK9zZ1Ta3BZQzp6/t0bOgz75+boXJb9UJ43QZtzKwYV395yrZhDVD4g6LYkzCLmQj5xqiRE75s/QA6tXeeRSYt+KaiuCvQzVppABnF1m49xBJxnxXJTXWrltKuLesbM+J8L/d++T2NmLSEU/92bFGD/rr+N6c+fTtlcurQvDpLwh36+hStnTuUlqzdQ2u2HqQdy8ZoTTzifK8df8I6yx3iCBD0uGxakIk4gDBeunKDjp34Watihj2Xgj7DZ1HBPB+Zsgc6PhrbvzQPDrbVJiyG5Rv1oS83TrFIivH4ybNoYck3ip83PY8DZfNuoXRs+wxTsBrILhI3pUuTkkYPbC9BbG6eMCG8bgY4JlYPSwqsSkHdm7Hvm7VeL066iG2TCFXvXh2QLEPgk3lKZZCM/YdPcJBi8qRvUcfmNShbZj3JIqyVBr489iMnVmjTuAqVKpqX4GKRIH5cCh3QzruB86LegfgQIVlMfKrffijl+jgLy5Op4NJxM1fTT79eoKs3/vZpBQdoDZdrGEC9OzZkDWRV4KZTrcUArVnu4ENcsXFfGhzgb3H7cfnqTarbdghtXRxC6dOm0roKEPxUp80gXvs1KxY31Y1DDPqyb/V4Vo5AgZrFsvX7mPibBxFr7ZBU5jQCCGzEnjqgW1POcmmL7OIQioQm6d5O6XT98kDkCAjhjRwj+YWTCCAAatys1fTb+cucfz5l8iTsxoCCK7j127/k9KTwd+vVvr6WQA8nuyg/dwABfGQ79Z/IftjVyxeltKlTUJve4wg+ol1b1aYHjx7T8IlLWJYp0zt6VDiU0oBK4oA1An9MCP8nTpyAqjbrz2tJZJgcmECznyBNsH+P0XRw3URKYiZDh+QiOLz4slwZhgkykbtsa1o+fSAnNEFxZ+IPazccFYjUol5FatmwknOT48CvYemdOHcd+4LCbxcFhgO8n0nfSkwTh3bmv31x9AcqnO9jun7zH5/OWugAJD75E+h0I8ARB5GHjx7zHCnLrvLNbtWoMnVpWdtnblp8aSKE8PrSbPlYX839z+LE8aOOgRN5BCP6teE0xCMnL6Os72cwbeA+NrwY0V0oM2zd+zWT3mXr9hAyT62fN8zk5gDC9ODhE+0+hLDuLlqzixZP7k9ff3eGpi/aRNNGducreQTN5fkka4zAX9cg8aGFb7351fecZdvYjcHXya7CKGTKMjp38SrrDvvFju22lM7Wc6LIrnUaWV1zp+qBHFvDDkPZXaNEkVy0dusX/E+zRvfiQwxSHs9cvJlWzBhEUJOQ4r0IIOgSOvbmZLd93wkc9wL3LVjpJw/rygljpOhDQAivPiylJisEzP3PYEWCvNXuleNMEasq1eLhzdMEOx9AQF3jKjkmdBnW+h9+Ps8kQ2c5ffYiDZuwmMk1Ckhv/5A5lCFtaloxM1jcYVwAO3jMAvZn7dC8Bp0+e4HWb/8i2pBdwAEr75Y9R2jjzsMsFdalZa3Xsl25ANsbH1FyZTUqFGc/aXcX+NDj4Hnl+t9UJN/HHJwH1zBFdnFAhNVQpy6wu8cUE+uHISF5srd47mz5ZiPVNGIXdi4fExPhcduYhfC6DVqp2ByBoFHz+LTaqObnpj8jNTFSn25dEipg+QACtVsHc8roUkXzcG8huVO37SAaGdiW/4Z0zHBJyJ/rQ8OjwQe7Q+AEDlRTCU2+OfELSz5BcWDlpv0s6I5/b1y7LH844F+MIB7Rd7YPP9LiIiUvMIwull3r0a7ZcpDgVtW5ZS3D69CRCswTfjjye92/sSa7cHUIHDmHE7vo1szW3feYXp+94EckOOk+aBp9t2t2TIdI6/iF8GqFUyqzhwCuTxH5PyTAn3+CACVkmkHazvrVShOusBH00bxeBQHRSxHANdvspVs5WAcRxxPnrKPalUtwcCLIrn+PURxsASmsZEleSV0ZKUigEDB0BlcBGZ/8uT6gw8d/YteYauWL0ufF87PEFrSDofmM4Ej4OI4f3MlIs9H+2dVbDlKJwrl8NsVwtJ8gJwZoj+ziPYHrQ42KxahO5ZKibOIEpp76qSK7KsZFxSXg1gAJKwrlzU6BXRp7qjsxoh0hvDFimqN+kA8fPeFkFB9mfZclWBat3sVBa0jNCdeH6v5BHGFtnYIx6nsuPTBH4OCRk7Ry8wFKGD8ep6uFpiSu50B2Py2Qg9KkSk7InBbQoQH/u9ECS+9Xx3+kwnk/5iA5SKWNHdTRFImPj0PTziM58BEJFUTj2Sji8rwvIQDlkk/zf8xuDMqyi8PnnLEBBPeHwWMXshvQ0D4tfWlY0b6vf/x5jUlt6IC2lCJZEho4ej67hb18GUZjZ66ieHHj0uIpAyRwTfNKEMKrGVCpzj4CkEhCANStf+6whUldfS9es5u+OfkzzR7Tmx+GXIvKTCN4ejcCyrKLRCN9Ozfi6GMllXR06wxtAvxAYcm6PXQMig3/Xyf4G9wYugRNptixYgnZ9e6lIr1zIwLWZBcJRlB+v/AXwRXp9MFFptS2buyGVO0gAjjI//zbRVNQGm44EXD45OkzqlSmMLVpUpXix4vrYG3yM0cREMLrKFLyO7cgAMJUpVl/2rhgOCVNkphWbNhHMxZvZv/CArmN+4K6pdNSKSNgi+zi77Be1PAPolFB7ahogRz0dqrkWhCDS8XyDftZX1SRXWuNZy0NSSWCgI8hgCCnA4dPsmVXkV0MAcoVKAN7NPexEUl3BQH9CAjh1Y+p1OgEArjKSZUiKb2VOCFt33eMBbkhfbV92WiWLpPivQjAJxtzhsQQSuD+5t93WDrs8xL5WX956bo91KdTIwuxfFdHpFJz5syehepU+YzmLt9OYWFhYtl1FVB5LtogALcwuPeYk11YDNfv+JLWzhnKWdigny2JKKLNlMtAXEBACK8LoMkjehBQ2qCIvIfYds0KxTk1aL5cHzBBgg/a8ZO/WGQz0tOy1OIOBBTZrfx5EerZrh43gQj2Om0G06H1k/hQowo+0PFcuLLDc/sOnyDoWEIeTXx23TGTUqevI6DI7orpwZQyRVKasWgTJxhBaVCjDGdIhN+7FEEgJiEghDcmzbaXjRXk5cCRk1S2RH4mP/D9bN93PG1ZHEpfHvuBdVjLlSxI/bs2EX8mL5s76+7YIrv4DXwI2wSMsdBfRlDbkW/PsGC+KwXrZtGa3eTfoCIliB/PlSrkGUEg2iKw88BxGj97NYHspkmdguX9IHO1Zs4QDmCDHjoswUHdm0ZbDGRggoAtBITwyrrwGgSGjl9MadOkoF9+u0R37j3kDfmTD9/n6GMQ4HKfFfCavkpHLBGAe8Pug99apFVVqV2RClUpNoDsQtoMPtqilyurSBDQjwAOhHfvP6I0qZOzy9GCVTuoW5u6hMyXSNFNsYiKVe9Cp/bOc+mWRX+PpUZBwDMICOH1DM7SSiQIID1nhUZ9KO3bKSigfQOqUvZTjipW0cfQldwwf7ikzPSRlaTIbr2qpUwJAEB2J8/bwJamLJnS+8hIpJuCgO8iMGbGKkqbOgUfRFWK7nZNqlJgyFw6vmOWKDf47tRKz11AQAivC6DJI/oRgFVi467DVL18MZMkmbnUDqRakEGpYN7sNLhXC/0dkBq1IWCP7MKyC9WGH3/5g7q3rWvS0tXWsFQkCAgCFgjAbxfuDNCuRgHphdsYNF/VrQuC3ZCpUIogEN0REMIb3WfYR8dnS1cSpLhhx2HUv1tTziMvxTsRgHvDgcMnqGmd8txBazcGZNmr23YwbV0cQunTpvLOQUivBIFogMCLFy+pWdcQKleyAAcGg9giJTcChbftPUqzlm7h//68eD7OoAgJQRxYf/r1AlUsXSgaICBDEAT+Q0AIr6wGr0PAnog6ZHWadwul5vXKU8XShb2u39Kh1xGw57ML/dzC+T6mJrXL8kNPnj6nq9f/pmyZ3xEYBQFBQCMC9+4/oiHjFxFUcZC9K32alEx0F67axQHBJT/NTUhRfOzELzRhcCdq1i2E6lUrTZ39a2rshVQlCEQ9AkJ4o34OpAdWCMAqMWfZNmrduLKFruS0hRsJqW03zB8hvmc+sGoeP3nK6TPLlypICFxTRWV/gk929myZ+M+Y14Wrd3FSCdEK9YHJlS76HAJIAQ49XiUHuX7eMPr4g/dM4wgYOpMQK9GqYSWT373PDVI6LAi8AQEhvLI8fAIBc11JuQb3iSnjTiL1L7KuBfdszumkL125wamAy5YoQL07NmCx/Mnz1lPzuhU4DbHIjPnO3EpPfRMB+NJDHzukf1vTAGz53fvm6KTXgoB9BITwyurwegSE7Hr9FL2xgwhS6xo0mX9z++4D6tOxIfk3qEThEeEUFDqPrt38l2aPCbBITOHbI5beCwLei8DJ0+doQOhc2roklPXNhex671xJz/QiIIRXL55Sm2YEYAEcNXUFtW1SVQKcNGPryeoQcAjpuQzpUvNHFvNqTXb//vcuW57y5/rQk12TtgSBGIdAyJRlrNhQp0pJWrlpP5nLB8Y4MGTAMQYBIbwxZqploIKAdyBgj+z69xjFhHji0C6U9K1E3tFZ6YUgEE0RgDpDlWaB1KVlLfHZjaZzLMOyREAIr6wIQUAQ8CgCwWMWsC+vcmOAZRdkt0j+T1gWadWm/dSnUyOqWbG4R/sljQkCMQ2BEz/9TgVyy41KTJv3mDpeIbwxdeZl3IJAFCEAn96s/2vvzuNjOvcwgD+h9iX2NZZeVVWl1qaqrtiVaGpJ0NojsW+xS1UoIWiqQhpii4hoLEEjBFFtqhEUtRSlVa6dqiUJIuR+fq97ppO5SSfTDDMjz/mr5Zx3+b7j83ny5nfeqVJB1exqYdepcV2MG9JdndAgpQ8f9PsYuyI+g32RQhYaJbulAAUoQIEXSYCB90VaTc6FAjYkkFHYleHfuZeEVm5jsHnFDFXiwIsCFKAABSiQXQEG3uwK8nkKUOAfCcg3skXtjId7j/a6s3cfPEzBMO8vUP1lB0wY2uMftcuHKEABClCAAoYCDLz8TFCAAlYhIGF31CcBsLPLhfnTh+Hx4yeIS/gJ12/eVt/KVqNaJasYJwdBAQpQgAK2J8DAa3trxhFT4IUTMAy7V6/fwuCJ/nAoXxoN6tTAxujv1E6w2/vNX7i5c0IUoAAFKPDsBRh4n70xe6AABYwIyC5uUOgWXRmDq8dU2BctjKqVysFnTF/I1xS3cPXClpUzeR4zP00UoAAFKGCyAAOvyWR8gAIUeJYC+w+fwoz5q7BpxUwVguWboCT0ytFlw907w7FezWfZPdumAAUoQIEXUICB9wVcVE6JArYssO/Hn7E0fCuWzhunphEYshn7D5/EidO/Y8+G+ShUML8tT49jpwAFKEABCwgw8FoAnV1SgAKZC9x/kIIP+nljtrcn6r1RXd24OPRr1K9dHY3qvqbO7r145YZ6ia1gAYZffpYoQAEKUMC4AAOvcSPeQQEKPGeBk2fOw3PcPHzYuRVc2jRR5/Em33+IWQFh6gW2Kg5lcS8xGQtmjFChOP7gCcQlHMV4HmX2nFeK3VGAAhSwDQEGXttYJ46SAjlOQF5kC4nYji7OzVDVoRxGTlmA23eT4DO2r/qmtr0HjmO6fwgmj+iJsdO/hL/PUDR1rJ3jnDhhClCAAhQwLsDAa9yId1CAAhYWkN1bL59AbAvzQ6kS9rrRTPMPQcSWbxDkN4Zh18JrxO4pQAEKWLMAA681rw7HRgEKKAGp4ZVvZpvq1UcnImUMI6YEcGeXnxEKUIACFDAqwMBrlIg3UIAClha4cOkaugyYivXB01T9LsOupVeE/VOAAhSwLQEGXttaL46WAjlWYNvuBCwLj0aJYkVw+PhZ7uzm2E8CJ04BClDAdAEGXtPN+AQFKGAhATmZoX3PCfCd5MmaXQutAbulAAUoYIsCDLy2uGocMwVysMDdxGQULVwwBwtw6hSgAAUoYKoAA6+pYryfAhSgAAUoQAEKUMCmBBh4bWq5OFgKUIACFKAABShAAVMFGHhNFeP9FKAABShAAQpQgAI2JcDAa1PLxcFSgAIUoAAFKEABCpgqwMBrqhjvpwAFKEABClCAAhSwKQEGXptaLg6WAhSgAAUoQAEKUMBUAQZeU8V4PwUoQAEKUIACFKCATQkw8NrUcnGwFKAABShAAQpQgAKmCjDwmirG+ylAAQpQgAIUoAAFbEqAgdemlouDpQAFKEABClCAAhQwVYCB11Qx3k8BClCAAhSgAAUoYFMCDLw2tVwcLAUoQAEKUIACFKCAqQIMvKaK8X4KUIACFKAABShAAZsSYOC1qeXiYClAAQpQgAIUoAAFTBVg4DVVjPdTgAIUoAAFKEABCtiUAAOvTS0XB0uBF1PgXmIyDhw5hQL586Fxw1rpJvkw5RH27j8G2NmhRZN62QII3xSr+vH3GZqtdgwf/jb+JwSFbsGqLyYhT56XMm1bm6fcYJfLTs23VHF7VKtaAXZ2dumeO3z8DC5evoGObd4x61iz0pgl+87K+HgPBShAAVMFGHhNFeP9FKCA2QVOnjmPrh5TVbuRy2fg1X856PrYGP0dpsxZrv7/aOxy5M6dy2j/CYdPov9oP2wLm4PKFcvo7vdfHIGYPQcQEz7XaBum3BC5LQ4f+y3DjzFLkD9f3kwf1Z+n/k1VHMpi7KBuaPFufd0f+8xbiXVRe3Biz0pThmLSvfLDRP02HvCd5AGXtk2ea98mDZQ3U4ACFMimAANvNgH5OAUokH0B/SDo3Lox/LwHqkYfP36C9j0n4OKVGyYF3n0//gz3MXOwLcwPlSuWtbrAu2TuWLzTsBbuJd3HiVPnEBiyGYeO/YLAWaPRrPGbarzJ9x/iUWoq7IsUyj5wJi08eJiCBm09MWOCOzq911R31/Po+5lNig1TgAIUyECAgZcfCwpQwOICWuAd8GEHLF2zVRdUY+MOYcSUBejt2har1sWk2+GNSziGxaFbIL9+dyhfGi7t3oXHR8649edd9Bs9G+cvXkPN6lXUjusrVSvCZ2xfyA5v1K54DO7jgjUbd+HilZtw6+iEPm7tUKZUMeXw6FEqvly1GVt37VNB27FeTYwZ1A21alTVOZ05dxF+i8IRf/AEShQrggplS+H46XPpdnhj9uxH6PqdGDPIDfXeqK6e1eYpgbdJozd07d1/kALPcfNU6D24fQkK5M+rdnelfa384qvNu5Fw+BSG9nVBWGQsfjt/GSPcO6N+7VeRmUWel3KrPi5cuob5wRtw5MQZNb8GdWpgUO/3EbB8I/b8cET5lS75dP7B88YhatcP6fqWP/96xw9YvjYav/x2Ue3Au/foAPnhRC4Zv8fYuer/D/50GlLi8dorldGraxu0adbQ4p8vDoACFKAAAy8/AxSggMUFtCD41eKpGP9pEBzrv46pXn3QbeA0NHyzBooXK4LPl6zTBd64hKMYNMFf1be2atoAR3/+FcvCo1W4dHV2woJlG7AmMhZD+rigRPGiKpS2dXpLBV65r2zp4nDr2FyVR8wPXq+C8iiPrspBKyXo6txMBWYJ2hKet6+Zg0oVyuDGH7fh1GUUChbIj37d30O50sURue17FVb1SxrCNu6E74IwLPIdBad36v5t4JW/lJA4ZNLnCA3wRv3a1dUcNm3/HrvXfa6e1cYu/y0hV+bQ7f3mkF3azCz6d2+Pazf+RAvX0crgo86tUdy+MDZGx6Ft80YoUrigmm+Hlm+jXu2nobyrsxO+DNmUru+tsfvUukhIb9f8LWz/Zj/2HjiOuVMGo31LR0ht8tvOQ9TzWlvfxh9RQTw+KhBFCxe0+GeMA6AABXK2AANvzl5/zp4CViGgBd71wdNw6uwFVQ87e7InJvouQew6f0TtjE8XeDv1/1jtSMpOqXZ5+SzC2XOXsCXEF39X0iD1tjvWfqZ2UeWSnVoJZ9Gr/XD95m007zoKEhQlPMt1+04imrgMw0edW2HyiJ5qHLILvXPtPFQoV0rdk1ENr+wOn7twRYXmUiXsjQbeqzduoaWrFyYM7aF2tDMKvOGbdmP1Qm/UqFZJN29jFjI/Ce27IvxRvkwJ9dyTJ2m4dfsuChcqkGFJg2HfUlYiAV/WR7ukX6kBFjct8HqP7IUPO7VUt9y6fQ9NPxiudqjbOjWyis8ZB0EBCuRcAQbenLv2nDkFrEZAP/BWq1IBLd28VGCS3VopRZCAqe3wPnnyBHVbD1A7lmVLPw1wcskubPL9B+olL1NqeFdGbMfcwLXqOe1ltyA/LzR1rKNrW16okxMVQgMmq9KDq9dvqWCtXaa+tGZY0iDtSDh27j1JV0+bUeA1fOFOyhOMWfQa7ovEpGT1MqDhlVkNr37f2ottUm4y2tNV14S243x4R7AKvrLDq+34ajfVcuqLcUO6o69bO6v5rHEgFKBAzhRg4M2Z685ZU8CqBPQDr+yIhq7fgdkL16jdQznBQD/wSkh7q/0gFYZbNv3rVIOnE7JDU8faJgVerfRAAq/8Cn7QhM9UsJWyAe3qO2q2CnXhgVNUmYV90ULpdpfNEXilRlZ2tKNWzcLLlctnuMNrGHiTkh8YtZDxFiiQDyvnT/xHgVfrY+SALvDs2VHXhtQ5L1weqWqOU1NTGXit6l8UB0MBChgKMPDyM0EBClhcwDDwSri8fPWmCn5y6QdeqbuVX5U3qlsT/j5P60a1Ky0tTZ1nKy+y9Rw2E5tWzED1l/864iyjY8n0A6/sEsuv74f174TBvV1Us/JCVsN2nurYLjm+y8snEPJCmv4RaRkFXnlOdlbllIW8efOotjJ7aU12d90GTlPhft0SHzWHrOzwSpvGLCbPCsbmmL3/V0srJ2CkIQ1vtnTHJ6N7o5tLC52jYd/SR7WqFdOFZtk5/v0/VxC3KUBX0sAdXov/U+IAKECBTAQYePnRoAAFLC5gGHgNB2QYeOWFtJlfhMK9R3v14lpKSqo6gUBe/JJygZSUR6jXxkPV3cpLWIlJ99WLYMYCr/Q7YOxcnD57AcP7d0aNVyojJCJGBVypnZXTFnZ8exCjpy5E6383VC+Nnb90DYtWRKoSjKy+tDa0Xyd1isGdu4k4duoc5AQGOSlhTeAUlCxeVE0/q4HXmIUW/uW0CXnJTmqf5QSKUiXt0ce1rdrRTkx6AO+RPXHnXpJ6STBwZfqX1oLDotTLfQN7dVQvCcZ+fwhBq7aoEgcpddBqeBl4Lf5PiQOgAAUYePkZoAAFrFVAC7wblk5XQdBY4JXdSdmZDVgeqep2tUsCsNfApy+bhayLwdKwKBVE67xeTZUjSB2wnDCg/8UTYRt3wXfBat0XPMiLaxNnLlb1vNqlf06t9O23aA3kObmkllhOOJAj1A7tCEa+/+3mau3qn61r+MUTWh2yhEjXjk66sCvtypFhsnOsndKQ0djlvqxYRMcmYFbAamUhl5zw8Ol4d3Xqghx9NisgDL+ev6z+7sC2IHWShX7f8gPEvKAIZa5dcuSYl6er2r2WHygcOwzOsIZ3/NAeKljzogAFKGBJAe7wWlKffVOAAtkSkBKGm7fuIC0NKiwafgtb6uPH6u/llISXcj89kzarl5zOcDcxSZ3EkNGzsht6526S2pnNlSv91wJntQ9z3mfMQvoSC7nEyvCrjCXoyzFl2ukVGY1NyjSuXv8D5cqU/Nv7zDkvtkUBClDAHAIMvOZQZBsUoAAFKEABClCAAlYrwMBrtUvDgVGAAhSgAAUoQAEKmEOAgdccimyDAhSgAAUoQAEKUMBqBRh4rXZpODAKUIACFKAABShAAXMIMPCaQ5FtUIACFKAABShAAQpYrQADr9UuDQdGAQpQgAIUoAAFKGAOAQZecyiyDQpQgAIUoAAFKEABqxVg4LXapeHAKEABClCAAhSgAAXMIcDAaw5FtkEBClCAAhSgAAUoYLUCDLxWuzQcGAUoQAEKUIACFKCAOQQYeM2hyDYoQAEKUIACFKAABaxWgIHXapeGA6MABShAAQpQgAIUMIfAfwGwZ2obeNdpVwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "color_dict = {\n", " 'cd': '#648FFF',\n", " 'limma': '#785EF0', \n", " 'limma-voom': '#DA79FF',\n", " 'fc': '#DC267F',\n", " 'ttest': '#FE6100',\n", " 'ranksum': '#FFB000'\n", "}\n", "\n", "fig1 = go.Figure()\n", "for gs in full_df.groupby('Method_Direction').mean().sort_values('Rank').index:\n", " fig1.add_trace(\n", " go.Box(\n", " y=full_df[full_df['Method_Direction']==gs]['Rank'].tolist(),\n", " name=gs.replace('fc', 'logfc'),\n", " marker_color=color_dict[gs.split(':')[0]]\n", " )\n", " )\n", "fig1.add_trace(\n", " go.Box(\n", " y=rand_df[rand_df['Method']==f'random']['Rank'].tolist(),\n", " name='random',\n", " marker_color='black'\n", " )\n", ")\n", "fig1.update_layout(\n", " title_text=f\"{ko_gene} Term Rankings for L1000 Gene Sets by Method and Direction\",\n", " xaxis={\n", " 'title': {'text': 'Method:Direction'}, \n", " },\n", " yaxis={\n", " 'title': {'text': 'Rank'}\n", " },\n", " showlegend=False\n", ")\n", "fig1.update_xaxes(tickangle=45)\n", "fig1.show(\"png\")" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB5TUVBuG35nZ2cLS29I7CEpVsStgAVEUUEEFUUFApCqiYEFBQcSuKOCvAvauIAiCSBVFinQEASnSe1u2zc7858ua2ZndzE4yyezOzr45x3Nk596b5Lk3yZMvX25sHo/HAy4kQAIkQAIkQAIkQAIkEKUEbBTeKO1Z7hYJkAAJkAAJkAAJkIBCgMLLgUACJEACJEACJEACJBDVBCi8Ud293DkSIAESIAESIAESIAEKL8cACZAACZAACZAACZBAVBOg8EZ193LnSIAESIAESIAESIAEKLwcAyRAAiRAAiRAAiRAAlFNgMIb1d3LnSMBEiABEiABEiABEqDwcgyQAAmQAAmQAAmQAAlENQEKb1R3L3eOBEiABEiABEiABEiAwssxQAIkQAIkQAIkQAIkENUEKLxR3b3cORIgARIgARIgARIgAQovxwAJkAAJkAAJkAAJkEBUE6DwRnX3cudIgARIgARIgARIgAQovBwDJEACJEACJEACJEACUU2AwhvV3cudIwESIAESIAESIAESoPByDJAACZAACZAACZAACUQ1AQpvVHcvd44ESIAESIAESIAESIDCyzFAAiRAAiRAAiRAAiQQ1QQovFHdvdw5EiABEiABEiABEiABCi/HAAmQAAmQAAmQAAmQQFQToPBGdfdy50iABEiABEiABEiABCi8HAMkQAIkQAIkQAIkQAJRTYDCG9Xdy50jARIgARIgARIgARKg8HIMkAAJkAAJkAAJkAAJRDUBCm9Udy93jgRIgARIgARIgARIgMLLMUACJEACJEACJEACJBDVBCi8Ud293DkSIAESIAESIAESIAEKL8cACZAACZAACZAACZBAVBOg8EZ193LnSIAESIAESIAESIAEKLwcAyRAAiRAAiRAAiRAAlFNgMIb1d3LnSMBEiABEiABEiABEqDwcgyQAAmQAAmQAAmQAAlENQEKb1R3L3eOBEiABEiABEiABEiAwssxQAIkQAIkQAIkQAIkENUEKLxR3b3cORIgARIgARIgARIggSIvvJmZbrjdbjidMSGNBrfbg+MnT+PYidMoVTIRFcqWhsNhD6ktVjJHYNqXPyGpQhm0v/bSgA15PB4kn0uFw+FAQnysuRWGufaqdVuxdtN2nE1OQY2qFXHbTdeEeY3Gm3dlZiqVYhyOPCtnZLjw74EjKF+2FEoWL5ZnWemfg0eOo1rlCoiLdeZZ9ujxUziXkoqqlSqYOu7kPHDoyHF4AGUbg63XOKnw1zhz9hyER2KxBJQpXQLOmLz7JPxb5L+GlWu3YMOWf9C5/dUoU6pEfq++wNdX1Pe/wDuAG1DkCUSc8H49axFGvTJN6Zg+3Tvg4T53+HXSxGnT8c606fjhwxdQt2YV5bfHn5+MH39Z7ldOxKdtq5boeWd7RYICLS9P/ALTvvoJv8+amOtCPHTUO5i7aKVf1ddHD0TbVhcrfxv50hT8tHCFcsFVl7KlS2Dog12Vk3peS+deT+Pvf/YGHYCNz6uNL999Nmi5gi5gpg+s2vYLWt+Pyy++AO+/8ljAJvceOIJ2dz+GSOc6+aMfMGHKd979EPmb+/nLVqHSbEc99l58si9uaXtF0HXJzUOXvqOUct+8N1qzfGpaOp577UPMmLvM+3uDOtXw2qgBqF2jsl+dA4eOYejoiVi/eYf379ddfSHGPdEXicXi/cr+seYvDBs9EcdPnvH+vf99HdH//k6w2WxBt10KyPbPXvAH3v90Vq5jUc4tndpfhQ7XX4GK5Uvraq+gCs2c9xvenvo9ZGz7LsJZbv763nOLoU0T+X/jvW9Qp2bloOcxIw2//r+v8f5nP2L61DGoX7uakaqGy2qdj4olxKNe7aro1uk6XeM750rNcsnP/TcMjBVIoAgQiDjh/eqHhRj92ode9Eu+fwvlypT0/vvtKd9j0kczMGPqWOXkJcvQURMxd9EKdLjhcpQqkahE8H5fvQmHjpxQokSfT3oGIqLqIhfJ5as3Y83Gv/HZ978of9YS3sW/r8PWHXvw5vvfKu3c1/VGXHVJY9SomqTUEcESme5w/eWoVLEcVqz5Cz8vWaX8JtIl8hVoeeuDb5XtU5ftO/dh49adaHp+XdTxEYGqlcorF/FIX4z2QTj2R4/wSgRMblRqVa+E4QPuDsdmmG4zJTUdF9/YFzWrJeGt5wcr4/zkqbMoXaq46bbzakA99l54og86trsyYNEdu/crUjpv8SosWb4OjerXDCi86k1j6yua4/qrL8Kufw8q0iPyMf/LV5WnIrKIGN9w56OKwPa4oy3Oq1sdS//YoBzXl7ZohCmvD/duz1/bduOOPs8qbfS9pwNKlSyOb2ctVo6fwQ/cjgd7BBc8Wd/Ap97E76s2Ke10uvFKRcLk71t3/IvpP/2qrE/rpjusnWCw8aV/rEe/4a8pteTm4KKm5+HY8VPYsn0Plq3cqPx906KsAILeRaLxzW/oDemzd154WG+1oOXyU/jU85HcuJUuWRzpGS7IDZWMV1nGPdkHt7YNPMa1dsYsl/zc/6CdwQIkUAQJRKzwtmt9iXKx63XXTXi0X1dv1+QlvHM+fUl59CtLhisTfYa9DHmMlDNiJbL7wKMv+XW3lvBKgROnzuCqjoNwZcvG+N/Lw/zqfD9nKW667jK/x59qBLpLh9YYNex+3UNKja6NGf6ApVEV3RuQo6BEv/RGyqSqeoHR2wehblde9fQIr971Gt1/ve3qKbdzzwF0uPcJPHRvRwzs1TlgFau3Ua/wvjP1e0z8cIZ3uwIJr9xctLptCCTS+NW7o7xpQ+ox8vzjvbxpGvOXrsaQkRPQ/bbr8eTge5S2JaImx6kcw7M+GueNCL/49mf4+Jt58H3aIutq33044uOcWPTtm0HTG/73yUzlRlZuMN98blCuKO6p08kY9/anqFShbK6nTHr6MD/KpKdn4Mbujys3znM+He+9EVfXLTcG49/5HNPeGKG5OYHGj1mxC7Tv+Sl8Wucj2a7Zv/yBx56fBLm+vDaqv6FuMstFa/+tPoYN7RALk0ARIxCxwjt5/FCMm/Apdu89hIXfvOG9IOkVXulHedQ34oX/4YG7b1LSDNRFImj7Dx1V/vn86x8pF9RQhFdrrGz46x/c9dBzQR+t56yrR3glsvbm+99gzYZtSiSsReP6eOi+joqMq4tIuETeRj7cI4vdb2uw7+BR3NflRuWxsDz6vOPmVti976DCR9IqrrmsGYb164oqlSrg/c9m4efFqyDrEhl45pF7lQhesCXQBSZQH0gqieSoSj/IvkgE/YZWFyspKL4RfblgywV9QM9OeGfqdEhES5Yb21yCx/vfhRI++aBawivROnk8K/m6o4f1RHxcLAaPnIBm59dFv3tvVdratHWXwqVLh1YKK3n8LrIgj7Uf7XcnWl3ezG/3jxw7Cbl4ybao/VC/TjUcPHwcInGSAyqLRNn+98ksrN20DWfOpigR2ysuvgDdbrteESmtRbZ31KvTlAiqMKnzX9rOkN63o2G9GpCxK8L4y6+rlf6VvpFobPfbboDdnv0oX+X20sgHlX4W1meSz2Hkw/eiQjntR/R6hVf2WW4EZbn1vicDRni//XEJnnl5Cob1uxM972rv3V3Z7pvuGY6rL22CyeMfVf4+fOy7mPXz7/h84khl3PmO56fHf6Dc9MrNrywt2/dT0ojW/fKBX+6wHOuyr59NHKn0b6Dl8NGTaHNHVuRSosyVk8oFLCv76vt0SM8xaGTMyooX/bYWH309Fxu27FS247ILG2HYQ3cp4yWvRSKW19/5qDJOJcVLzyI51x9/PU9JxZKIuIyxay5rqkTG5VgSrg8/87YSHZbI98XNzlOaTYiP8wriL0v/xOczfsHW7XuU32pVr6xEl+/qeK1yfAVaVOGTPp+/dJVy/MhxIeevpx/uoRw3sn2PPPM24uJi8dLT/fzGtLQ79s2PsffAUSUlJq8c/EDnI/XpgER+JRAii4zlcW99qhyvBw4fVxjITdodHVqh663XKrnQerjIDdqXPyzEvMUrlXNKhXKllIh711vboEnD2so5Q55uyA3IgmVrsODXP5U0FHkS+NTge3Kl+OjpT5YhARLQTyBihVdSAk6ePothz03CvV3aeR8/GxHer2YuwuhXp+WK8PriGfTUm8rJxyrh/WbWYjz7ylQlSivRWr1LMOEVYblvyDiluQubNEBisTjlka8s8thRHj/Kop5URRp8cyFFxER01MefUlYudvKCnQiIXNTlgif/L3+XRU7GcuL/fsqYoLsR6AITqA+u7jQIqWkZaHZBXZQsnohNW3cq65Pc2k8nPu0VmTsfHK1cmNVFfv9nzwHlAiQvccl+qUtO4ZVIadcHRytlP57wpMJNTReQC7SkC8ji+1hY/i1pKsWLJSjSL4tv1Fpk6eYeI7wXxZrVKilyrOZPqmXVKK3UlwuavKglL6CJvOeVIyv7+uioiUp70idJ/4nxs0PvQ8P6NXHPgDEKD+mX8+rVUG5+pGynG6/C2BG9vSxUbsLLl59vpDRnp+oVXt96wjxQhFeNBH/w6uO47KLzvdUkqtW4TU9F6GZ/Ml75+z0Dx2LNxm34c957fk9MVEHp1vk6PDWkh5JycFG7vsrN3idvP+W3C59+Nx8vvPWJImYSwQu0iGgMevotqG0GHdz/FdB7DBoZs1O/mINXJn+prKFd65bYs++wMp5k8b3R19pG4Xhjt8eV/v/orSdxUdMGee6KlO//xBvKY32RWTkGlq3YoNy0yTiR1C85VnoMGuvNaVZvdosnJiiiJjclcnMi9S+/+HxIlHn1+m1KvXlfvAJJwQq0qOcm9XcZwxKZV294ZWzKy8PqzU/OtDA5HuUG69orW2DC2CF57qvmE6cMF+TpwBczFmDCmMG49qoLlTb27DukPB2Q4172V86Jv6/arOyT+oRRXhzNi4svWzlum19QTzmXyjarN3Za+3/qTLI39e7HT14M+vKn3rHKciRAArkJRLTwXtKiEeTlLjlp/PL1a0pUTK/wyom0+4AxysVg8XdveqNuORFYKbwyY4NI6Z8b/vaTUD0DLy/hlajHbb1GKhx+mDYWdWtl5S6rUuUrpepJVS5Ijz10pyIacbGxikTIG9IivBIRGvdkX1xwXi2lHbmpmLPgD0WiJH9TTvpyAn90tORGr8Sib98IGBVU903rApNXH8hFXaKi6tv9wm7IyLeUmw/f/GxVHiQa27tbByWqIzNiyIVeLkjrf5nifXztK7wS/eo+cIxyMZH8T8kDlSUv4RUuzw9/wBsdVB+9+0YXnxz3nhIBfqz/Xbi/643erpUopETXVeGVF87kxbPnHuuF22/Oml1B9lEe3Usk68Im9QMOCxFU2e8BPTtDXsRSF/VmSiJGEqmViK7sz0MjXlOeUvhGNlVusk/y4mfjhnUUWaxUoQxiA8x8YLXwSi6+tCnpDOpYU/dFveFZOWey8id5kVCO1Zz5pv/uP6z0tcigRPVk9obrugzVzC/9Yd4yPPHCe0q08O5O1wXk+8Hns/Hau18pN0t6Z74wcgzqHbPqC5RyvIncqTnaMo5kPN3XpR0eD5JnLqklcmMhS8vmDXFJ84Y4r24NNGlUJ1eahqSIyXF6Z8drMWLA3co4kP0a/eqH+G72EkUiRSbzenR/d//nlRtp3xsnGYNf/rBAedKQ1+wL6rlJykkEW8RQUs+GPvu2cty/NLIfbr7uMuX82WPQC7nSDtQXjCW1zPepllZHq+cjYStRZxn7IqByzpDjVo5fdZHt33fgiPedEPm7iGiHHiOUm3J1jObFRb0REH4vjXzIG33+c8M2LFu5AYN63eYNRsiNxhOD7kHlimUV/n2HvQJ5CTPYkwk91xGWIQESCEwgooVXImPyEpg8YlOjMXkJr5xISiQWw7ETp7zRT3kkLyf4QIuVwqtefGS7//fSsFyP4/IaiHkJrzzqvKvfaOXR2NNDevg1I4ItkbE1895TLmDqRSXno2GppEYyczJR0w5yCoB64RXREOHIa1EvMEb6QARw5579yiNKmdpN0i/kcalvxFrkQSK66kUnW7CzZtDwlXFVeCWCqt7s5Lw45iW8OblIesFtD4z0jj3Z3ibX9lQi4BKZ9J1+7oW3PsWn3/3sFV51LMgLVA/d18nQFFGBhLfvY68oj5pz3sAt/3MzHhj6kl/qjipd6rjQcxK0WnjVF9Z8b2DU7ZCUBhEQ9YZF0hRkydnPavqB+uKapODITbBWDqYqdJL+kdfMBJLGJFE+SZu6+tKmXjTykurKdVv8ULVs1lBJaTFyDOodszI7jEiciN6NPhHps+dScMUtA5QnEvJkIq9FRG7CB98pM83kXETmJRVITZ95aMTrSnRXZvuoXDE7jUPGj4wt9QYrL7ETERUhnTjukVypPsHGWKAc3nWbd6Bb/+eV85s8yZCbbXmKIuNDHety3F7TebAiyXJT6Zu+k5fwqlPbiVgKK/VFYXnHYvjAbn5pEfL79l37cOjwCRw/dVpJ/ZAgw28z31Fehs6LS7/hryrXnJ8+ewnVq2S9R5JzCbT/n0//BWPe+Fi5oQt2ng3GmL+TAAkUYuEVybi990jlEdvPX7yC72YvDThLQ87dfHJwdyW3Ma/FKuFVZUFOsHKn7puHqmcA5iW86osWebUjbKpUKu8VXq2pfwIJr0RXhIO8ZCcXAnVRbzb0vEinCq/ePpBIp6Sb+E4rpdZVI03y70DyoEYP1f2WsiK8EqWWRcbLm88PUmYG8F2MCK/k813fdaiSyyf5v+q/ZaqnV555yK/dnMKripkUkmi7iJXkZt7S9sqg8/8GEt5ruzyiXHSXTp/gt2715TDfNI1A3PIaQ1YLr6T2SFRapizLmQcu+yLyoUZ0c/5b3U41Cqru2/6DR3HDXcOUx/FqSopaVr1xk5fe5OW3QMt7n85S8rpz3uBJ1Feiv76Lmv9v5BjUO2bVMRxoO+UR+4KvX9dz+lAi/fL+wLade5UnOcJCFhFE9SU+NYoeqEF1nOcldmpetrQhKSmSo9rmyhZoc0XzoC+5BhI+iaaK4PvmdKsSKO9eSB9k923wc7psW6AUK8nXfeKF/ylyqqa+SO7tu5/M9EbKc/JZNuNtJfqeFxcZv5KPnPOGzbetQPuvjq3xTz2ozDTEhQRIIDwEIj7CK7utCplEAMqVLhlQeNXHyRIFk4iFiIbMYes7zVdOjFYIr0SLJGoksit5bnm9BBOoG/MSXvU3edHi4qZZL5HkXG667lJlf/N6EzqQ8MpLMwOefCOX8Kq5jkaEV08fyFRQvYe9rGyvzELQtFEd5cMB8iKWRDr0CK8apcspvL5cJK9Vtt13tgkjwqtGF1URUHP95CW/SS8+4tcFOYVXfhQ5kzmj5SVCda5mERDJt8w5B61vY4GEV6KgJYon5JIgLWGIBOGVqffe/XimN3/adx9lX4SFOrew+qjcN0VFyqs3DvKURiLw51LS0LL9g7mmKpOy6nEoNyN5fXxEnRFCpj8bMbCbd7NkOkP5T5b1f+1QZo1QhdfIMRiIfc4xq84VK4+71RcdfRnJ8SHHdSiLTGMnx5ikDn084SklhUZ92U9u3rQWmapPXlILNhuBHL9y0yCP4dVFcoA/eefpPJ9kBDo3nT57Dpd36K+8PKseV+qYFun/+YtXlVQxeZKlRluDMQkkvFJPfXKjPiVQnxpK+o9MQyepVtIfL73zuTK/ux7hDXRs+m5noP1Xn0xQeIP1Kn8nAXMECoXwqhPcy8lbHvnIo2yteXh9Xy6SaYvkBQWR0C8nPxtwDlOzwqtObyQny/dffTzkSerzEl71kbXkc8pjx7yWSBFe2cZAfSBvsctb6fK2tkR11EVNoTAjvCIJH7z6GF6a+IVygezd7WY80reLdx1mhFd9YUrW8cePk/weq2oJr7pSGb+SliEvKMk+SpqDvBUfaAkkvKoU5nyxK2fqhbQbCcL75YwFeO71j3Ll1KpRWt/5dVVB+e6D55U5eNVFzY30nV9XTX/I2QdqRDnYC1zyYlj77o8rq1DfDcjZFzJ25EU6VXiNHIN6hVfNEc/5Up/eU7pEJuVmLtDjffXjJc8+ej+63tLa+2Lgyjny0llcwNWowusbcdUqLPm3ks8r5xzhFSy3NtC5SR2/vi8ny/rU/pQor0Tf1ZQHPXzyEl6Z87xjz6e8EWV5Ec43dUFtX83Xzym8WlzUly7zYkvh1dNzLEMC4SNQKIRXdj/nm/TBhFfqyAcG5GUMeZnjvZeHaX4+OFThlZwwmcpGokryxvjbY4eY+jBAXsKrzgUsoiUvi/h+OU5SPhb9tsb7xnEkCW+gPlBfkvvgtcdx2YVZb+8LT4moyJv2ZoRX/dKaRLi6DXheyQOUKJ5E82QxI7xSX72w+c4EIC+MyUtG8vhdvemS8dqkYR2/MaHOOBDsLfNAwvvq5K8w5YvZSnqFRJ3VRWYmEG6+sz9EgvCqKSByfEx7c4T3BUX1pbGRj9yrTGUli/pY1/cGRW4U5IU8efwsM4Wo6SpqKoBvDq7vS0YSBQz2WV0Zax9+PVfJk335mX65ponLKbxGjkG9wqs+iRI+U98Y4bfNyrRrm3bk+fEaSWGQJyIjBnVTzkG+i8ye0GvoS4qIfjHpGeUlNjXinnOaRqknNyHCUE09kfQg31k01Laln2T6QF++6uwYwVLIAp2b1P70nVdZ1qfmTavr1kqNCXRpDCS8IumjXpmqfFhEzVlWI9/LZ030TnMoUecHH39VEXpVeGVdgbjITBtyQys31zKG1UVuHpb/+Zci1xTe8IkMWyYBPQQKjfDKxa/bgDHeqbb0CK/vSV99LC1Q5EK8cNkahc8n385TpEhOVCKUEl1Sp/fJ60tr8vatTFMji7x1LPNU5lxkvlX188fBOiPYtGTyQpREEWUbZU5Tmf5HZmlY/Pta5bGvmgsZacKr1Qdq5E+i77fccAXkS7DymFn91LIVwqtexO/sN1rJE3555EPK42Gzwitye//DLyrdKTcekrfn+2lpVXhF6mX8SGRNJCL5XAqmz12mjN9gEb1AwiuzU8iLO7IMuL8T6taqolxMJfdWxtl3U573m85N62W/vMahmsMrU9rVrl4pV9GrLmmqMJSXjGSeUVlkXlRJTZAX82S56pIm3o+/yL/VG0qRfMn1lOiqPA6XcSzpKOrMBNIvbe/K+tKazE4gj5Xl0bk8Us45BZnKx/ultRKJ+P6nXxW2wkXPlwmlz+4dPE555C/tyOwADepWV8aibKM8ZpYcY1851HsM6hVeXz7Sf3KOSiyWgC3bdyvz5LZoUj9XnrJvp6hzfsvfhJFIrbz5v+nvXfht5UaFpe98szK1lkS25e+SPiD9IUKm5vz65j5LOoTwlxffzm9QE/sPHlPmQlZTUeSzy5IqJvNWi+jJbAby8Qut1Ax1m9VzkwQg5LPvMuOK+jU9OUZkNo+c0Wr5op70kdY0dHmNZd8vrcm0hxkuF+RjIivX/qXsv8i8PPmTqRjVsrIOYSI58bN+/s37foGv8AbiIjfYkluuTpcoqSGHj55Qcthr16ikPM2i8Aa7CvJ3EggvgcgT3v/mztWSAjX3U5D4Ts+lRgwlH1CdQ1bFJicveatbTnIyj6fM9qA+ntRC6/tYTWaHUD8VrJZV36RVI0B5dU+wzwv71lWnnAr0WVcRfrkIvjzpC79PEsvF+s6ObZTJ/WWRl3FEKLTejFcjSvImtDweVBcRs/5PvO43hZb8puZO68nhNdIHXW9tjWdfzoqyqItIlnxYQaTr7ReGoM0VLZSfAsmDiJZ8Fnr+V68pF3lZAn14QqKyciGSR93nN6ilfLb3hmsuxhvPDVTqBeKi5vDmfJQqwvfptz8rLwhVr1pR2VaJxslNi5pjKC/ZyMcs1Pl5ZT3SVw/3uT3oi5Qik10fHKVMZaR+HEPlJDcFw8dM9t4cyN8lejRmeG8/2QgpwvvfsRdoTKvypz6K1yrnO7+p/C4i+9SL7ysCqS4iG1JOnV5P/btMQTb46bf89k3EbPzTDyrzGPsu0mdyfPrebEhkbUjvO4K+wa+2I08VvvtxifKimm8/ye8STe7U/mpFhFWJ03sMGhmzkiYz9cs5mPL5HL99EUbS93l9/lYEVs4bs+b/7p27V903NT9eIugyJaG6yJh+9d0vlfl0fRdJL5Hp69SPfuzYtU/JP5f0MXXsygtZ8pRBnmr5cpdtlWny8vqUuu+5SeReneNaHb9jR/TRfNFXjUqrN6yBxmbOv6vnI9+/CxPZVnmRVV5qVD9aI0zkxsx3vmrpd7l2SJ7ybz+84/0EdiAush4JQMjHktRPOsvf5KZ4YM/Oyo1DoHOzmsNrdB/1smA5EiCBLAIRJ7zsmOAE5NGjRA9kzkuZDcLIJ4CDt55/JeRCI18tK1e2ZMAvj+Xf1phbUyDJUSeWl6/cVSxfJuijdr1bIRdjYVe1coVcMqi3jfwsJ+K7e+9BRR7zigLKNkn6gHy1rkbVJOXrgIEWEdD9h44p8lWrWiXNlCW9+6jOxSpTzcnTk0BzFavtWX0Myr5In0oUUiTJ9wuCevZBxFnGg7x0J9OQqZHzQHVF9mWuakmJkvUF+kKaPNo/fSYZSTJ2nTFKc7Kt8rRB/pPofrkypXTfZKjbox778oKv75fsfLdXtrHtXcOUpyjLZkwI2id6OAUqIxzkhkvGUpWk8l7BDVRei4taVvpC2EofFubzsxmerEsCkUiAwhuJvcJtilgCclH8Ye4yXNy8IaoklVNmDZjx069KPmjOt/4jdie4YSRQCAjI7CaPPPs2Hrq3ozKbCxcSIAESMEOAwmuGHusWOQI5X6RRAcjj3Fef6R80MlTkgHGHSSBEAuqsJPO/fDWkqR5DXC2rkQAJRCkBCm+Udix3KzwE5CU8kd5/9uzHmbPnlLSSOjWreD9HHJ61slUSKFoE5DiT3OSSJRJzfTymaJHg3pIACVhFgMJrFUm2Qx0ddgsAACAASURBVAIkQAIkQAIkQAIkEJEEKLwR2S3cKBIgARIgARIgARIgAasIUHitIsl2SIAESIAESIAESIAEIpIAhTciu4UbRQIkQAIkQAIkQAIkYBUBCq9VJNkOCZAACZAACZAACZBARBKg8EZkt3CjSIAESIAESIAESIAErCJA4bWKJNshARIgARIgARIgARKISAIU3ojsFm4UCZAACZAACZAACZCAVQQovFaRZDskQAIkQAIkQAIkQAIRSYDCG5Hdwo0iARIgARIgARIgARKwigCF1yqSbIcESIAESIAESIAESCAiCVB4I7JbuFEkQAIkQAIkQAIkQAJWEaDwWkWS7ZAACZAACZAACZAACUQkAQpvRHYLN4oESIAESIAESIAESMAqAhReq0iyHRIgARIgARIgARIggYgkQOGNyG7hRpEACZAACZAACZAACVhFgMJrFUm2QwIkQAIkQAIkQAIkEJEEKLwR2S3cKBIgARIgARIgARIgAasIUHitIsl2SIAESIAESIAESIAEIpIAhTciu4UbRQIkQAIkQAIkQAIkYBUBCq9VJNkOCZAACZAACZAACZBARBKg8EZkt3CjSIAESIAESIAESIAErCJA4bWKJNshARIgARIgARIgARKISAIU3ojsFm4UCZAACZAACZAACZCAVQQovFaRZDskQAIkQAIkQAIkQAIRSYDCG5Hdwo0iARIgARIgARIgARKwigCF1yqSbIcESIAESIAESIAESCAiCVB4I7JbuFEkQAIkQAIkQAIkQAJWEaDwWkWS7ZAACZAACZAACZAACUQkAQpvRHYLN4oESIAESIAESIAESMAqAhReq0iyHRIgARIgARIgARIggYgkQOGNyG7hRpEACZAACZAACZAACVhFgMJrFUm2QwIkQAIkQAIkQAIkEJEEKLwR2S3cKBIgARIgARIgARIgAasIUHitIsl2SIAESIAESIAESIAEIpIAhTciu4UbRQIkQAIkQAIkQAIkYBUBCq9VJNkOCZAACZAACZAACZBARBKg8EZkt3CjSIAESIAESIAESIAErCJA4bWKJNshARIgARIgARIgARKISAIU3ojsFm4UCZAACZAACZAACZCAVQQovFaRZDskQAIkQAIkQAIkQAIRSYDCG5Hdwo0iARIgARIgARIgARKwigCF1yqSbIcESIAESIAESIAESCAiCVB4I7JbuFEkQAIkQAIkQAIkQAJWEaDwWkWS7ZAACZAACZAACZAACUQkAQpvRHYLN4oESIAESIAESIAESMAqAhRekyT3H0sx2QKrkwAJkAAJkAAJkEDeBKqUSyAiEwQovCbgSVUKr0mArE4CJEACJEACJBCUAIU3KKI8C1B4zfGj8Jrkx+okQAIkQAIkQALBCVB4gzPKqwSF1xw/Cq9JfqxOAiRAAiRAAiQQnACFNzgjCq85RnnWZkpDGOGyaRIgARIgARIgAYUAhdfcQGCE1xw/RnhN8mN1EiABEiABEiCB4AQovMEZMcJrjhEjvGHkx6ZJgARIgARIgASCE6DwBmdE4TXHiMIbRn5smgRIgARIgARIIDgBCm9wRhRec4wovGHkx6ZJgARIgARIgASCE6DwBmdE4TXHiMIbRn5smgRIgARIgARIIDgBCm9wRhRec4wovGHkx6ZJgARIgARIgASCE6DwBmdE4TXHiMIbRn5smgRIgARIgARIIDgBCm9wRhRec4wovGHkx6ZJgASMEfh7tQcnjmR6K1Wu7UCN82zGGmFpEiCBQkeAwmuuyzgPrzl+nIfXJD9WJwESMEZgxv8ysGeLx1upRSsHruroMNTIySMebF2dLc12hx0tb7AbaoOFSYAE8pcAhdccbwqvOX4UXpP8WJ0ESMAYAYnwrlniwuF/PajZ0IbmrWIMR3h3bfZg5vsZfise9FqssQ1haRIowgQOHLdjzkqnH4Fe7dLCSoTCaw4vhdccPwqvSX6sTgIkYJzAom9d2LDMjVa3xaDpVcYjsxLhXbskU2kjvhgUaWaE13g/sEbRJbDzoAPTfva/SRzdIyWsQCi85vBSeM3xo/Ca5MfqJEACxgmYFV5Z4/FDHnw6PgNlKtpwzwj/SJXxLWINEihaBFLTbdi2345vlsaieIIHXa7OQK2k7DShcNCg8JqjSuE1x4/Ca5Ifq5MACRgnQOE1zow1SMBqAsfP2PDm9HiUKe7Bw51TrW4+V3sUXnOIKbzm+FF4TfJjdRIgAeMEKLzGmbEGCVhNgMJrNdHwtkfhNcl3/7Hw5uyY3DxWJwESiEICFN4o7FTuUsQT+HufA79ujPFup8sN7Dtqh8MOVCvv9tv+rtekK6kOVi6M8JqjSeE1x48RXpP8WJ0ESMA4AQqvcWasQQJmCazeFoMfluvLd5cUB0l1sHKh8JqjSeE1x4/Ca5Ifq5MACRgnQOE1zow1SMAsAVV4y5Zwo0ZFbZndvNuOdJdNyeml8Jolbm19Cq9JnkxpMAmQ1UmABAwToPAaRsYKJGCawMptMZi13InK5dw4r6r2jAzLtziRmg4M6ZSKsiUY4TUN3cIGKLwmYVJ4TQJkdRIgAcMEKLyGkbECCZgmQOE1jbBAG6DwmsRP4TUJkNVJgAQME6DwGkbGCgVMYOG6GCxan53/WrOiG+H+MpnVu0zhtZpo/rZH4TXJm8JrEiCrkwAJGCZA4TWMjBVMEFi43gmbJ/vxfLO6mYbzUym8Jjrgv6p8ac0cQwqvOX58ac0kP1YnARIwTiCahPfALg/2bMnOh0wsZUfjy41/Ltk4RdbQS+DZjxP8it7fNg21k/yn4dLTliq9rZtmoE0zl54qEVWGEd6I6g7DG0PhNYzMvwIjvCYBsjoJkIBhAtEkvKsXuPHbrGz5qVDVhrse1Tf1k2FwrBASAYnwrtnuwKlkG5rVyUSbZhmGI7yyYgpvSPi9lRjhNcePwmuOHyO8JvmxOgmQgHEC0SS8EuFduzgT29e5UaYi0LxVDCO8xodE2GtMnReHXYfsCDW6a4Xwnkuz4YtFsX77etuV6Sht8Xy3gWAywhv2YRbWFVB4TeJlhNckQFYnARIwTCCahFd2fvt6N+ZMc6FuEztu6pn9JSvDYFghbAQiQXjPptjw8jfxfvs48NY0VChlLL1iytw47D6cnTajN8WCwhu24ZUvDVN4TWKm8JoEyOokQAKGCVB4cyOzIs/06Gk7RKrUJTHeY1imDHdmIakQCcIrqHYdcmDqvKwo773Xp6NGxUw4HcYghiq86ocnSiR4ULaktmTvO+qAKxP88ISxLsmX0hRek5gpvCYBFvLqmXM2IWPmOu9eOOqWh/PRtoV8r7j5kU6Awhse4Z3+mxNrdmRHmJvUcuGOqzMifTgE3L61/zjw/bLsFIDiCcBjd6SEtD+RIryy8c99moBMNzCyWwpiDMquuvOh5BOrEV49APnhCT2U8rcMhdckbwqvSYCFvLpr6m/IeG+pdy/sjasi7n/3FPK94uZHOgEKr3YPqVHe0T1Ck7pfNzmxaqsDJ5JtKJXowUX1M9GqCYVXaFN4AUZ4I/3MmPf2UXhN9h+F1yTAQl7dc+AUXD+sg+vD32G/uAacA6+FvUFSId8rbn6kE6Dwhkd4pdXFG2KwYK0T1zR24boWhVd2VUJ7Dtvxwdw4VK/gRu8b00Ie2gUlvPKinKxbz9K9TRoaVNOXz2smwstPC+vpjcgrQ+E12ScUXpMAo6B65rzNSB81E47rGyH2uVujYI+4C5FOgMIbncL77xE7Mt1ZOcSrttlxOjn7xao6ld2o9d/ct8UTPCgfIId03T8xWL0t+zl/WgZw8IQdcU4PKpXJ/niErCOvL52JZGZnMwMHTtiRmg5UKutBgtP3IxQutKibPY9yXsdOKJIpL5dJzq2epfu16WhQVXtbcubtBmovry/A8aU1Pb0QuWUovCb7hsJrEmAUVKfwRkEnFrJdoPACOw/ZMU1n5M/IVFoFGeF9+et4nE311UztgdmirgudrtCOPi/e4MSCtfpmuni6W0rAF75yvgQY6BBp3cyFNk31RcJDEV6rIrwU3kJ2kgvD5lJ4TUKl8JoEGAXVKbxR0ImFbBcovNEtvCWLeWDT8N50F5CSZoMe4U0q7Ublcv4RXXWYr92RFQHWI7zNA0RvDxy349AJG8ItvGqEV4lQl9VOVzh8wo6UdBv0RHhlf0on5m7nZLIdwoUR3kJ2MjSwuRReA7C0ilJ4TQIswOqpN78Nz4lk7xY4n+mAmBsvMLxFFF7DyFjBJAEKb7bwlk70oHk97cfYa7c7cDLZZuhjCQUZ4X3p6wQkpwJXnJ+BWI0grUjm1r0OJYWg0xXpmqNo0boYyJfRaia5UTtJm8uSDU64PcDTd6fAGSAYrEZ4RWi1Fom87jpoD7vwqhHeUsU8aFFPe1vW74rB8dM25JXDq0Z4KbwmTz6FuDqF12TnUXhNAizA6hTeAoTPVZsiQOGl8FJ4sw8hCq+p00mRqUzhNdnVFF6TAAu4elrfj+HeuB9xk++BvWnVkLaGEd6QsLGSCQIUXgovhZfCa+IUUiSrUnhNdjuF1yTAAq5O4S3gDuDqQyJA4aXwFgbhXfNPDE6dzU5G3nnQDklRkNkmalfyz6OVz/sGSp2QGSOY0gBUKZcQ0vmClbIIUHhNjgQKr0mABVydwlvAHcDVh0SAwkvhLQzCq3dmBDkIAn0shDm82acICm9Ip0tvJQqvOX6g8JoEWMDVKbwF3AFcfUgEKLyRK7yp6TZl9gLfRV4g07NE20trqvDKjBHxcdozRuw+lDVjBIU3+Aih8AZnlFcJCq85fhRek/wKujqFt6B7oOis/9RRDz56wf+x7b1POVGqXPB5V3NSovBGrvDuOuTA1Hmxfl2m91PH0Sq8gWZGEEiL1juLtPCu+XMVUlLOecdLnbr1UalSZc0TI4XX3PWCwmuOH4XXJL+Crk7hLegeKDrrp/AG7uvt692YM82Fuk3suKmnvo8mqB+eiLRpyeSrZrNXOCHzx8qS17yuOYlQeHOPkWhPabjmsubYsf1v746Pe/lN3NuzD4U3DJcGCq9JqExpMAmwgKtTeAu4A4rg6icMzZo/ddBr/lFAIygY4Y3cCK/aj+o8tnqju1KPwlv0hHdI/96Y//NPOHniOBqd3xiPPfEM2rXvQOE1ckLUWZbCqxNUoGIUXpMAC7g6hbeAO6AIrp7Cm7vToynCS+HN7t9gH3uQkkU9pUEY9LirMxbMn4uPPv8O191wY8CzIlMazF0wKLzm+DGlwSS/gq5O4S3oHih666fwRp/wauXtBhrZPdumo1aAL6Axwlv0IrwU3vy7BlB4TbJmhNckwAKuTuEt4A4ogqun8FJ4KbzZY4ARXkZ48+syUOSEN/lcKk6fPYek8mVgt2e/He12e3D42AmUL1sKMY6saVJ8lzNnz8GVmYkypUr4/Z3Cm19DNTzrofCGhytbDUyAwhu9wlsq0YMWdV2anb9mRwxOJdvACK8/HgovhTe/rhdFRngX/74O49/5DLv3HlLYfj9lDBrUqab8v/w27LlJOJeSqvz72UfvR9dbWiv/L38bPuZdLFi2Rvl30/PrYsKYwYoYy0Lhza+hGp71UHjDw5WtUniNjIHCnsOrpjRQeP17nTm82nMP5zw2mMNr5GwRetkiIbyLfluLAU++gT7dO6BjuyuVKG1cXCwS4mORkpqOazoPxsBendH9tushZYeMnIC5n7+MapUr4P3PfsTXMxfh4wlPKeUfGvE6ateojOcf70XhDX3cRUxNCm/EdEWR2RBGeCMrwitTiMlUYupyOtmGE8k2iLzKlGfqklTGjZsvCfT526y5dym8FN7lW5xITQeGdEpF2RIU3kg6sUe98Ho8Htz2wEicV68GXnyyby72Et3t/8TrWDPvPcTGZk2AfdM9wxX57X7bDbijz7No17qlIsuyzF20AkNHTcTGhVNhs9kY4Y2k0RzCtlB4Q4DGKqYIUHgjS3j1fv62enk3erdP0+x7Rni1bwQY4aXwmjpZWlw56oX3+MkzuLrTIFx7ZQtkuFxIPpeGyy86H73uvgnxcbH4auYiTPtyDmZ/Mt6LdtBTb6JW9cp4tF9XtGzfD2OGP6BIryyb/96FLn1H4beZ76BUiUQKr8UDMr+bo/DmN3Guj8IbmcJbr4obxRNyC0pyKrBtnwMUXv9+kw9C7DpoR+tmLrRpSuFV6TDCG7nn+KgX3r+27VaitF06tMYVLRvj9JlkjH/nc9x83WUYNex+JWXhp4Ur8M17o729JPm8xYsl4NlH70PjNj0xcdwjaHV5M+X3Hbv24db7n8L8L19F5aRySEnLjNze5ZYFJXC0x1Skr9uL8h/ej9gW1YOW1yqQ8uNGnHjieyS0vwBlxt8WUhusVEgJGP8qMJ7rc1bZ2WfeKx7yTs/+LA2rFmag/d1xaHlt1pMpo8uRA25MeuYcyleyo//zxYxWt7T8X3+68PWkVDRsEYOu/eN1tb1tnw0TZthRtgRwaUPtSNofW2w4fgYY1NGN+lW0y7w1w4Ht+4FLznMrbeVcTpwF/thiR60kYOht2uf77ftteGuGHWWKe/LclhNnbRjc0Y16AbblqWkOnEkB2jRzI06jW/cetWHjLhsuO8+Dbte6NTnNWWnDnFV21K3sQf2q2vs8b7Udbg/wSp9MxAb4sN3gSblf3tZaYfuWHrS/WHtb3ppux/YDNlxynifg4/2fVmWlk7z1UCC2gPRRmeLSz9rrWb3NjiOngL43udG4ZoB+DrItx8/YsGKrDfUqezC4k/Z6lm224cvFdlSv4MEFAdazeIMdKWnAM90zUb6krqGMzh07YO7cn/Dd9Jm48cb2ASslxOnrE31rLXqliozwLp0+AWVLZ53Nvpu9BOMmfIYVsyfh61mLg0Z4x47ojbatLlbq5ozwHj+j/Yir6A2lwrnHZ3p+BNeGfSjxQQ/ENMt6idHokj5nE5JH/oDYducjcWxHo9VZvjAT0PfE0m8PXx6U9XLsYxP0iZ0WnvlfZWDN0kxc18WJC68J7SJ47KAHU8amoWySDQ88HVegvfD32kzM+CAD9Zs50Km3PoHfccCO/81xKiJ0Uf1MQOPmY/XfDoiw9r0pA3Ura0vMuz/G4p+DNqUNEdacy8lkG1b97UCNCh4MuDXrK3k5l38O2vHuj04l5/fiBtriJm1IWw/enIE6lbS35flP43A2Fbi6sUtTePcds+GvPQ5cXD8TXa7Rng1i/p8O/LwmBrUruQPu84K1MYrwPn9fWkDhHf6BvjFx/YWZuKGF9rZM/tGJnQftAdkKx/lrsox7/APa11LpG+mjvNiu+ceBY6dsuL9tBhpV12YbbFvkZmT1NofCrd/N2hHr5Vsc+H5ZDKqWdwdcz6+bY5CaBjzeJR3lSuo7Qdx5e0fM/3kuvvhmOm5oG/jDE2VL6OuTAj2YI3jlUS+8p84k44pbBuDziSOVGRZk+eqHhRj92ofYsGAqlv6xXsnhXfvz+3A6sw68dnc/hnu7tPXm8N7Y5hL07naz8htzeCN4NIewaUxpCAEaq5giwJSG3PgKcpaGqfPiII/nm9dxobSG8MpUYjKlWLXybvRhDq+385jSoH1jw5QGU6fHsFaOeuEVev2GvwqZZ/eN5wbi6PHTeOy5SUo6gvz7XEoaWrZ/EMMH3I1uGrM0vPfpLHwza7EyS0OxhDj0G/4aZ2kI65DM38YpvPnLm2sDKLwUXn54InsMcB5ezsObX9eFIiG8ew8cwcPPvA3J55Xl0haN8NLIft65dGWOXXlRTV2efrgH7u50nfJP+VCF5PQuWb5O+Xfj82pjwtghqFi+tPJvzsObX0M1POuh8IaHK1sNTIDCS+Gl8Bac8FYq40ZCbO4xmJIOZXq6mhXd6NVOO71i5bYYzFruROVybpxXlRHewnaeLxLCq3bK4aMnERPj8Oby+nZWZqYbB48cR8Vypb2pDb6/S2pERobLK8nqbxTewjbk/beXwlu4+68wbj2Fl8JL4S044Q12zqDwBiNUeH8vUsIbjm6i8IaDav61SeHNP9ZcUxYBCi+Fl8JbcMKbVNqN+LjcL5Olptlw6CQjvNF8nqbwmuxdCq9JgAVcPZqE171wKzJ3HPYStTeoBMc19QuYMFefkwCFl8JL4S044W1eNxOlE3PP5HAy2Y61OxxMaYjiUzaF12TnUnhNAizg6tEkvOnP/IDM+X95iTpuaozYp7NmF+ESOQQovBTeYMIbbLS2qJuJTldoT5G2aF0MFq53omaSG7WTtPNMl2xwKtOSPX13Cv6bnCjXKp/9OEH5m3xYQmvhLA3M4Q02TiPtdwqvyR6h8JoEWMDVo0l4JcKb8eUquNfvhf2iGojpcjEjvAU8vrRWT+Gl8FJ4GeH1PQp63NUZC+bPxUeff4frbgg8D2+Vclk3IVxCI0DhDY2btxaF1yTAAq4eTcIrKF2TFyPjo+WIefAaOO+7vIDpcvUUXn1jgPPwZnF66esEyKeMrzg/Q/ODEAeO27F1rwOM8PqPq/W7YnD8tA3d26ShQTXtD09MmRuH3YftYEqDvmMyGktReE32KoXXJMACrk7hLeAOKIKrZ4SXEd5gEV4Kb/YYkdQJ+ThIqWIetKinnV5B4S2CJ9IQdpnCGwI03yoUXpMAC7g6hbeAO6AIrp7CS+Gl8GaPAX54gh+eyK/LAIXXJGkKr0mABVydwlvAHVAEV0/hpfBSeIu28N51ewe4XBleCH9t3oSTJ46j0fmNUbpMGe/fb+l4O+7r1df7b+bwmrtgUHjN8eOX1gzyS399PtzbsqfOimnfGDG3NDXYinXFKbzWsfRt6bNXMnBsf/Zcl1fe4sCFbRzhWVkha5XCS+Gl8BZt4a1avpius1bf/oPx7HMvUnh10QpeiMIbnFGeJRjhNQYwtf9n8Kz911sp5t7L4OzXylgjFpam8FoI06cpCm9grhReCm9RE97i8R7EBLjfPZlsUwbE6B4pmgdNNObwqsJ7R9dusNmy9t932fb3FqxdsxoUXmuvTxRekzwpvMYAerYdRvrkxXD//g9iul+CmNtawFa5tLFGLCxN4bUQZo6mfpziwj8b3bipZwzqNrGHb0WFrGUKL4W3qAmvnkO0KAlvzUol4XK5MGTocDgcue8EVq9agcUL56NPv4EYNeYlLz6mNOgZSYHLUHjN8WNKQwj80l+Yg8xZ6+EccSNibm0WQgvWVaHwWscyZ0sUXm22FF4Kb1ET3npV3CiekPtzvjIS5OtmRS3CS+EN33Unr5YpvCa5M8JrHCCF1zgzvTUiaR5eCi+FV++45Ty8WaSsmId38QYnFqyNQVJpNyqXy1syn+6WAmeAVAN+aS336F25LQazljtRuZwb51UN/UtrFF69ZwZry1F4TfKk8BoHSOE1zkxvDQqvXlLGyp065sHZE9l14hNtKFfZWBtqaUZ4GeHNjwivntHJTwtnUzqZbFeizTUrutGrXZomPgqvnlEVuWUovCb7hsJrHCCF1zgzvTUovHpJGSv364xMrFmcHdGp2ciGW/s4jTXyX2kKL4U3nMKrRnjjnB7Ex2oP0VP/vSjGCC+FN6STWCGtROE12XEUXuMAKbzGmemtQeHVS8pYuQ3L3FizKBMS6S1WEmh4sR1Xdogx1giFNyAvMykNxROAelW0Hy9v3+/A2RTg/rZpqJ2k/clZ+YqXzATQvI4LpYvnTgEQOVyzIwbVyrvRp7125G/XIQemzouFvH9UIl47jeBMqg2ZmUDPtukIp/AuWheDheudqJnkRu0kbS5LNjjh9gCM8FJ4QzqJFdJKFF6THUfhNQ6Qwmucmd4aFF69pIyXW/+rG4u/c6HJlXa0vj002ZW1MsJrbYRXT0/ml/Dq2RYKrz+lovilNebw6jlSrC9D4TXJlMJrHCCF1zgzvTUovHpJGS9H4TXOTG8NMxHeGDsCzgBwNsUGlzvvCO+UuXHYfdiOxABzxboygeRUG6qXd6N3kAivtFG/qnYkeds+u9IOhZfCS+HVe2awthyF1yRPCq9xgBRe48z01qDw6iVlvByF1zgzvTXMCG/pRA+a19N+dL92uwPyYQM9Ed5g26onpaFUogct6ro0m5K0CEmPKGzC27yuNtuDx+04eMKG1s1caNM0+zO5vjuv3kxIG6UTtW8EGOHlPLzBjj2rfqfwmiRJ4TUOkMJrnJneGhRevaSMl6PwGmemt0ZBCq8qZYHmik1OBbbtc+iK8Eaj8Abrw8ImvJXKuJGg8TJfSjpw8ISdszQE6/BC/DuF12TnUXiNA6TwGmemtwaFVy8p4+UovMaZ6a1RkMJr5Utr0SS8wkXP0ryuCy0CRIEjMcIbbJ84LVkwQoX3dwqvyb6j8BoHSOE1zkxvDQqvXlLGy1F4jTPTW4PCm0XKig9PWDVLg96+y6tcJAnvmn9icPJM9tbuPOhQcrdFcGtXyk7bKF0CaFFHOy2F8/BaMSoKrg0Kr0n2FF7jACm8xpnprUHh1UvKeDkKr3FmemtQeCm8o3ukaA4XmTJOos2linnQop62iK7fFYPjp23o3iYNDapp5wrnbHzhuhhI/nDrphlo00y73Zx1KLx6j+jILEfhNdkvFF7jACm8xpnprUHh1UvKeDkKr3FmgWqcPOJB8qnsX/fv9GD5HBeq1LbhsvbZU77ZHFD+prXsPGTHtHlxsOqlNSvm4Y2mlAYrejuSIrwUXit6tHC3QeE12X8UXuMAKbzGmemtQeHVS8p4OQqvcWaBaiz42oVNvwePxMXGefDgOO1cUgpvuiZepjQEH1cCjhFe647nwtIShddkT1F4jQOk8OZmlvnnHnjW7FF+sLWoAceFNYyDBUDhDQmbrkoUXl2YdBVShTeuGBCr8ca8xwOcPQVQeP1xHjhux9a9DuUlsU5XUHhVOkxp0HXYFflCFF6TQ4DCaxwghdefWeaSbUgf8Z3fH2MeuBLOB64yDJfCaxiZ7goUXt2oghZc+LULG393o1YjGypWqR1mEgAAIABJREFUz52ykOkCVi9wwxkL9HtRw4gBMMJL4aXwBj3UWMCHAIXX5HCg8BoHSOH1Z5Y24DO41/zr90db8XjEzxtiGC6F1zAy3RUovLpRBS1I4dX+mANnacg9dPjS2kteKFXKJQQ9tlggMAEKr8nRQeE1DpDC688s5YrxmhATfhtuGC6F1zAy3RUovLpRBS1I4aXwqoMkv760lnNQMoc36GEadQUovCa7lMJrHCCFV0eENzEO8T8/bBguhdcwMt0VKLy6UQUtSOGl8FJ4XRgydDgcDn5aOOgJw6ICFF6TICm8xgFSeP2ZaeXwxj51Exw3NzEMl8JrGJnuChRe3aiCFqTwUngpvBTeoCcKiwtQeE0CpfAaB2hWeN07jyHzl83eFdtiYxFz76XGNwRAWt+P4d64H3GT74G9adWQ2sictxnpo2bCcX0jxD53a0htePafgvu/WRrsLWrAVqVUSO1Ek/CePuHB2eP+GKrU1Z6TNSRYBitReA0Cy6M4hZfCWxiFd/W2GPyw3ImyJdyoUdGjOcI377Yj3WXDw51TUaa4dpmalUrC5aLwWndG0dcShVcfp4ClKLzGAZoW3oVbkfbU9OwVJ8Yi4edHjG9IBAlvSBuvUSmahPePn1xYMc9/Ts1Br2m/sW8VP992/l7jxolD2es/uMeDPVs8yqwCMruAuiQUt6PpVXbdmzBhaNbb9Ub2Zd2vbqSezd6WXX95cPhfD2o2tCGpRva2lEmyo0ELfdty/JAHn47PQJmKNtwzwql7+60oSOGl8BZm4dVzDFB49VDK3zIUXpO8KbzGAZoW3p3H4PpqJTJnrAPKJsLZtWWhj/Aap6hdI5qE96+VbqxZ5MKxA4Az3oMKVey4fWD+idmsDzKwc5N2hMaXfukKQI8n9It4KML70QsZOHU0+LbUvsCGDg/oYxSq8O7d7oYNWZK9Yq6/uFWtZ0PVulnCXaIsULKsdkSewkvhLYzC+/c+B37dmP0lQJcb2HfUDocdqFbe/+a86zXpKJ7ACK9V1zYr2qHwmqRI4TUO0KzwyhrdWw8ireeHsNVPQvyH9xvfiP9qREpKQ8g7kKNiNAmv7Nq+7R58NzEDVerY8lV2Zd2q8JZNAuITc/eQKwM4/C+Ql/CmnQOO7ve/6Mn+yHJbf38xLV/FBvkQg9aiCm/F6kCMhs+mngOOHwTyQ3hVYQ82Zi9p58Cl7XK/kCP1KLwU3sIovDnH/PEzNrw5PV5JXZCIrt6FKQ16SVlbjsJrkieF1zhACq9xZnprUHj1kgpeThXe+s3tKFMxd/mUZGDDMjdKV7ChxxPaUdU9Wz2Y8W6W4AZbOvVzonoD7YjoR+MycOqIB02vtGvKt0Rrt6/zUHhzQF673YGTyTbc3zYNtZO0Pzk7dV4cZK7X5nVcKK2Rc3kq2YY1O2KUCF6f9mma3bjrkANT58WiVKIHLeq6NMtIG9JWz7bpqJVE4aXwMoc32DnR6t8pvCaJUniNA6TwGmemtwaFVy+p4OWsFN6YGCChuPY6U84CLhdA4c3mwy+tZSA2+8m5Fww/Lax9M5FfnxbOeQQzwhv8PBpJJSi8JnuDwmscIIXXODO9NSi8ekkFL2eN8Lox412Xksva8GLt6O2W1R6cPuZBxwdjUOM87RfOIjHCWzXAjBmnj3tw5gTAlAb/MVaUI7z1qrhRIl47wr7mnyyzH90jJUD03A6Jwpcq5kGLehTe4GculghEgMJrcmxQeI0DpPAaZ6a3BoVXL6ng5Si82ozUHF4RWq1l33Y39u3w5Cm8C752YdPvblSqYVNmici5ZLqBv/90IzbOgwfHxWmuZ+chO6bNi0PpRA+a19NOEWBKgzaXJRuccHuAp+9OgVMjkhz86NBXYsrcOOw+rG/WEApvNtPVq1Zg8cL56NNvIEaN4aeF9Y224KUovMEZ5VmCwmscIIXXODO9NQpSeFf94kZmRnYUZ9taN04cBnLmwCbVcKDW+frm042El9bM5fBGb4TXjPCqL60FG9fOWKDfi9ozYKjCGx8LVCqjHT08eMKO1HQwhzcH6PwS3tkrnJA+UBfJp5Y8Zsl1lhsV36VXu0D50YzwqpyqlEsIdsjw9zwIUHhNDg8Kr3GAoQive/1eZK7Y6V2Z51iyd1qymE7N/DbCee/l0EyA09hUztJgvP8C1Zg0PB0yc0GwpfEVdrS5Q19YicKbRTMSUxrMCK8a4ZVZKWI1fNbjAc6egq4Ib7DxJr/zpTV/SvklvDn7ZuG6GCxa70Trphlo00w7PSFnHXmhkCkNWVQovHqO9sBlKLzm+IHCaxxgKMLr+mQFMiYu1LWyhLkPAyW0H4PmbIDCqwuprkKq8FauDdg0ArjJp4FTRwEKrz/OwprDa0Z4rZiW7MRZG9b+l/8ZbIDKDAyBvnrFWRqC0bPudwpvFktOS2bdmDLSEoXXCC2NshRe4wDNCK+tYgkgwGd3Pev3A243KLzLEfPgNXDed7nxzjFRY9KIdLjSgYuutcOhEcA9tMeD3Vs8aHy5HW26MMKroqbwauTwuoDVC9zIK6XBxFD1q0rhtYpk8HYovBTe4KMkfCUovCbZUniNAwxNeP9AxsRFsDeuAvsltTRXKlFgpLsQ/9Ng2Erqy3VihNd4/wWqQeHNTWbPVubwao0XKyK8Vo1cCq9VJIO3Q+Gl8AYfJeErQeE1yZbCaxwghdc4M701CvKlNQovhVcI6JmlgcJbND48kfOIoPBSePVey8JRjsJrkiqF1zhACq9xZnprUHj1kgpejtOSaTOyYloyCi+Fly+t8Utrwc/C1pag8JrkWRiE1/XFSriWbPPuqaN5NTj7XmNyz0OvTuENnV2wmhTe3IS+eycDNmTniV7V0Y4K1YLPDUrhpfAKAX5aONhZR//vjPAywqt/tFhfksJrkmlhEN708T9lTeH132Jv1QBx4zqb3PPQq1N4Q2cXrCaFNzchNSKp/tK5fwyq1St6wrt2iRtLp+ubCur+Z2JRojSFtzALb7Bzhfwe7g9P5NyGUIRXPlwhH7CIc3pQqaz2fMuHT9iRkm5D92vT0aCqdvTcim3J2QY/LaxnlEVOGQqvyb4oDMLr2XMcGV+sROb0tXBc2xDOXlfCVqe8yT0PvTqFN3R2wWpSeHMT2rvdjSXTM3FsvwdXdXSg0SV2xCcE//BFtEV4KbzaR0+0vrQW7FxR2IRXz/5QePVQKrplKLwm+74wCK/souuzFch4eyFi7moJ5+BrTe61ueoUXnP88qpN4dWmI2kN8rlbvdFdaSVahTepBlCzoXaEe+1iN9LTAEZ4s8dRYUtpyHkE7Dlsxwdz41C9ghu9b9T+mln4zkj+LYcS4T151oY1O/w/Yy0fr5DlmsYZsPsM5aa1M1GupP8X3ALtWyjbwghvfo2U8KyHwmuSK4XXOEAKr3FmemtQeLNI5UxjCMRPPp5waTv/i6lalsKrTY0vreXmsuuQA1PnxSqfzG1RVzttZM2OGCUfuGfbdNRKCt9La9EmvFqj8LlPE5DpBkZ2S0GM9uEb9JRJ4Q2KKOoKUHhNdimF1zhACq9xZnprUHgpvB0eyIp+5VzUlAZGeP3JRFtKA4VX39mSwquPUzSVovCa7M2iIrzuHUeQ1mOKH634Gf1hq1DCMEEKr2FkuitQeP2F18znbxnhZYRXCDClQffpJ2hBKyRTVsIIb1DULKBBgMJrclhQeCm8mfM2I33UTDiub4TY5241OaLMVafwUngZ4TV2DDHCa4yXmdIU3ix6NSuVhMvFeXjNjKVQ6lJ4Q6HmU6eoCK/ssifNhdQ2rwJOBxIWDwuZHCO8IaMLWpHCS+Gl8AY9TPwKUHiN8Qq19Jp/YrBoXQzkJbTSxT04r2ombrokI6TmGOENCVuRr0ThNTkEKLzGAVJ4jTPTW4PCS+Gl8Oo9WrLKUXiN8Qq1tBrdVevXrOhGr3ahzRphVnhnr3Bi6z6HV75bN3OhRR19c1T77j/n4Q11NBRMPQrvf9zdbg8OHzuB8mVLIcaR+7XPM2fPwZWZiTKl/B/hU3iND1wKr3FmemtQeCm8FF69RwuF1xgpc6VPJNtw6mz2HGLxsR5UKqP9IYlgazIrvPIhC/mghbq0bpoBvZ86pvAG653I/T3swnvk2ElUKKf9yZ51m3egQZ3qSIiPzRdC6ekZeODRl5GSmoZv3hvtXefi39dh2HOTcC4lVfnbs4/ej663tFb+X/42fMy7WLBsjfLvpufXxYQxgxUxloXCa7zrKLzGmemtQeGl8FJ49R4tFF5jpCKntFnhPXjCjtT07I/PlCruRplEffP3UngjZxwY3ZKwC+/QUe+gc/trcPWlTfy2bekfG9Bv+Kv4beY7KFUi0eh2Gy7v8Xjw9PgPMP2nX9Gofk2v8KakpuOazoMxsFdndL/teiz6bS2GjJyAuZ+/jGqVK+D9z37E1zMX4eMJTyli/tCI11G7RmU8/3gvCq/hXsiqQOENEZyOaoVdeE+f8ODs8ewdPbLfgyXfu1C+ig2tOsf4EahSN/DX0qyYK5azNGgPOCvYLvzahY2/u1GrkQ0Vq+fux0wXsHqBG85YoN+L4Q2IMKVBx4klwoqYFV6rdocpDVaRzJ92wi68b33wLd79eCb+9/IwXNmysbJXcxb8oURU5d/vjHsEzlBnjjbA6L1PZ2H2L8vR4YYrlPWrEV6J7vZ/4nWsmfceYmOz5q+86Z7hivx2v+0G3NHnWbRr3RJ9undQfpu7aAWGjpqIjQunwmazMcJroA/UohTeEKDprFLYhfePn1xYMU/fY85BrwUWISukjMJL4RUCnJZM58knH4tRePMRdhStKuzCK7mx4yZ8gs++/0WR3n0HjmD0ax+i/bWX4oURvb2SGU6m8xavwvOvf4iv3xuNJb+vw1czF3mFV/5/2pdzMPuT8d5NGPTUm6hVvTIe7dcVLdv3w5jhDyjSK8vmv3ehS99R3sg0UxqM9xyF1zgzvTWiRXhj4z2Ii9eO4J45mUWDwps9Ko4f8mD7Og9qX2ADUxr0Hi1Z5ayM8BaP96B+Fe2vqG3b78DZ1KL9pTVjPRO4NIXXKpJFq52wC6/glHSCVyZ9iWlf/aTQ7db5OowY2B0Oh/b33K3sgg1bdqLXI+Mx5fXhaNKwNr76YaGf8ErKwk8LV/jl9Er0uXixBDz76H1o3KYnJo57BK0ub6Zs1o5d+3Dr/U9h/pevonJSOZxKDm1aFSv3UU9bKR8tR/IbvyDhnkuROPR6PVWQufs4UudsyC7rciNlym/KvxP6XuXXRkLHFrBXLqmr3TOjZyFtxjoUH3kz4js311UnZdrvSH5rAWKaVoXzstqadVKnLYcn3YVyC4fCVipBV7un7p+GjPX7UGrKfXA2r6arTs5CaXM24cxT0xHX7nyUGNc5pDasqnTu7YU4N+U3FBvQGsUeuNKqZnW18+rD55CRDlzWNgYO/+wDpf6B3W78s8mNFlfHoN3d2tHZpbPSsWy2C9Xr2VCjgfY3Q+V3WUZMLBZwu17sf0757aqbtb86tufvTOzZ5lZ+D1Tm28lp2LY+Ew0vcqBcUm75PnfWgzVLMlE2yY4Hn43X3Jadf2XiiwlpKF3OhsaXau/PxhWZOHnUg7sGxaF2I+0yk0el4sRhNy5q5UBCYu5tOXrQjS1/ulG/qQN39IvT3JaVC12Y/3U6qtS0oc4F2utZscCF9FRgwNgElCyjfcMxzgDbqwPwn/N5OtYudaHuBXZUrpn7OuByAcvnuRAbBzz6euB+9t1R4xmYWbUnzYrBjgM2XFTfjbIlcrdyMhlYudWBmhU9GNRR+03+HQfsmDRL3zduH+qQibqVtZ9ijPrYibOpwDVNMhGnMXT3HbNh8247WjZw485W2mKds/N3HrThnZkxqJXkwcBbjc9EoOvgz+dCwz9wKp8WfrFXRsifFrZik4+dBsZ96UTZEsCTd+l3gfKliynz8A57/Ak4NF6SX7niDyz45Wc8NGAwxo1/xbuppRK1z2dW7EtRaCMswitRXbcn9wH95nvfYsoXszHro3GoXrWiwldrRgQrwT//+kf4ffUmtL48S6w2b9uNTVt3oUuHVnjovo6Ys3BF0Ajv2BG90bbVxVn1c0R4z6bkPcjTV+6Go0opOKpqv7hn5b7m1Vbyh8tx9vVfkNjjUhR/VJ/wpi/ZjhODv9S1iWWn3gtni+q6yp4aNQup09eh5DM3I+E2fcKbPPV3nH1zAZxNqyL2cm3hPTc1S3grLB4Ku07hPXHvNKSv34cy0+5DbIjCmzp7E049OR3xN56PUi8WrPCenbAQyR/8huIDWyOxd/4K70uDs4T3inbawrt/lxs7Nrlx4dUxaN9dW3iXzEzH0h9dqFHfhpoBhFd+l+WpyYFFaGy/LOG9uoP2BWK3CO/fbuX3awKU+WpilvCeL8JbSVt4Vy/OEt5+o7WF95/NmfjirTSULp+H8P7xn/AOjkOd87WladIzPsJbPIDwrs4S3i79AwjvAhd+/iodVWrlIby/ZAnvwHGBhfcFA2wD8Z/zaTrWiPA2zkN452YJ77A39Qlv4IzuvE9Lb/+QJbwikVrCe+IssGKrA7UqejCks7Ywioh+v8y/76RNWepW9pfozldmomo5bT0f+ZETZ1OA1k21hXfvURs27bbj0vPcuKu1PuH956ANE2bEoHaSB4M7RYfwDnsvS3hf7l2wwnv0NDD2cyfKlQCe7qZfeMuUzBLex4drC++KFX/gl/k/Y8DAwXjxpWzhLZ5A4dUlGQEKhUV4JSVAndUg2MaF+6W1pX+sx1/bdns3Q2aGWL95B3rc0Rb33H4DVq7dquTwrv35fTidWWGpdnc/hnu7tPXm8N7Y5hL07naz8pveHN7MHzcgfexs73odLWrA+WJn2EpoXxiDcTL7u+uzFch4eyFi7moJ5+BrdTXnXrYDaY99A5SMh61Oec06nm1HgOQ0xE3uDntTfRFSpjTowh9SoWhJaahSB6hWT/sJkJrjy5SG7CHClIaQDhelkprSEKyFauXd6NNe/7yxz36c9ZRpdI+UYE17f3/p6wQkpwJXnJ+BWK2nJMft2LrXgRZ1M9HpinRd7e45bMcHc+NQvYIbvW/Uv/26Gi+gQkxpKCDwhXy1YRHeZSs3Yv+ho7rQdGx7Zb7k8aobkzOl4VxKGlq2fxDDB9yNbhqzNMjLbt/MWqzM0lAsIQ79hr8WdJYGz/5TSL1jcq79dw6+DjF3ZUWK83sJSXh/3Y60x7+FrVoZONo20tzkzB83wnPoNOImdoO9ub4IL4U3fL1P4c1iy5fWco+xtUvcWDrdhaQaQM2G2jcTaxe7kZ4G3P9MLEoEeChlBdtInKUh2FFJ4Q1GKP9+jxbhDUasT7+BGDXmJW+xKuX0peoFa7eo/h4W4Y1kmDmFV7ZVotESlVaXpx/ugbs7Xaf8M/lcqjKjxJLl65R/Nz6vNiaMHYKK5bOuBlovrWX+uQfpAz/PhcFxdT3Ejr+9QPBQeLWxp/X9GO6N+xE3+R7Ym1YNqW8y521G+qiZcFzfCLHP3RpSG1ZVovBGmvB6MOPdDMQlAOUqa/fysQNAWgrQqZ8T1RtoP5j/aFwGTh3xoOmVdsRrzOLICK9VRxCweEMMFqx14prGLlzXQv9j6pxbwAivdX2SsyUKb/jYRnPL+Sa8O/ccwN4DuaO+l198ftjzePV0YGamGwePHEfFcqW9qQ2+9U6dSUZGhsv7wQn1NyPCG9P1Ijgf1pc/q2ebjZSh8FJ4jYyXUMpOGpEOVzpw0bV2zZfWDu3xYPcWDxpfbkebLhrPawGo05JFW0qDHp4dH4xBjfO0I68UXj0ErSlD4bWGYzhbiRbhHTJ0uOZLa6tXrcDihfPBCK+1oyjswrtx6048Omoi9h44ornl4c7htRZX7tYCTUuWet9UeLYd9qsQ+/bdcFxYI9ybpNk+hdc64U0fMxuZs31mrwjQo7ayiYifNTBf+5sRXkZ4A01Ltn6pG4u/dyGxJFBKOyUfB3d74M60oeczsSheRFIach6gkSC8wU4azOFNUF5aG9ktpUBnaeCHJ4KN1Mj6PezCK6kCf/+zF8893guVK5bL9ZGJpAplYbeH+n5twcMMJLyeM6lwffAr3NsOw1Y8Do47WxaY7AolCi+FN9xHCyO8uQnv2erGjHddKFnWhoYXa5/ntqz24PQxD/IrwqtnHORXDm+wbcmPL61ReIP1QuT9zghv5PVJYdiisAvvtV0eQZdbWuOhezsWBh6GtzGaPzzh5ktrmuNBjfA6rqoLW4Ok3GXOpcP1xSowwuuPpiinNESC8EZihDfYCbeoCW9OHl8vjcXGXQ7ccVU6mtTWNw1ZzjY4S0OwURb674zwhs6uIGqGXXiHj30XGRmZeG1U/4LYv7Cvk8Jb9GZpoPBqH1aM8BaOCG8kzNIQ9hOziRUUZEoDhVdfxzHCq48TS/kTCLvwLv59nTLP7dsvDEGlCmVz8W9Qp3q+fHEtXB1P4aXw5hpbjPDypbX/BkUkpjRQePO+GlB4w3W1tK5dCq91LItSS2EX3mAfoYjWl9YibRAxh1e7R0KZlowRXkZ4hUBKMrBhmRulK9jQ44kAnzCOwBxeCi+FN9KuT0a3h8JrlBjLC4GwC+/uvYdw+kxyQNqNGtSMiGnJQh0OjPAywssIbxYBpjTkPoswwqv9qeRQz7f5Uc9shPdEsg3rdsRg4bqsqffaNHOhddPQ5vNlDq92j1N48+NIiL51hF14ow+Z/x5ReCm8FF4KLyO82UfBvu1u7NvhwSXtHLi0XdET3l2HHJg6L9bvtGDk88K+FSm8FF5+ac06i8wX4T16/BT+2rYH51JSc235tVddmGuqMut2L/wtUXgpvBReCi+Fl8KrEpAI79rt/qIvUd5QFgovhZfCG8qRo10n7MK7fvMO3N3/+YBbzBxe6zozr5aYw6tNhzm81o0/pjTkZsmUhqIX4bXuiAIovBReCq91R1TYhXfwyLew/+AxjHzkXnTr/zy+nzIGSRXKYORLH8Dj9mDC2CHW7U0BtMQILyO8jPAywssILyO84bj8UHgpvBRe646ssAvvTfcMxz23t0XXW1uj2XUP4Jv3RqNR/ZpYs3Eb7hk4Fgu/eQMVywf4hqV1+xm2lii8FF4KL4WXwkvhDcdFhsJL4aXwWndkhV142939GO7reiO6db4O8v/97++Eju2uhMzeIDL88YQncWGTBtbtUT63ROGl8FJ4KbwUXgpvOC49FF4KL4XXuiMr7MLb65HxqFKpPMYMfwCjX/sQv63ciOED7sb8pasxY+4y/PHjJBRPTLBuj/K5JQovhZfCS+Gl8EaH8P66yYlVWx2QF89KJXpwUf1MtGoS2pRiVlyKKLwUXgqvFUdSVhthF97Zv/yBXf8eUCK7h4+exO29R+L4yTPKyof1uxM972pv3d4UQEsUXgovhTdyhTfYKSGvqbNmfZCBnZs8qN/cjjIVc7fED09ov5BWmKclm/6bE2t2ZM2fK0uTWi7ccTWFN9hxlN+/cx7e/CYeHesLu/DmxOTKzMTfO/5F9SoVERvrhDMmBna7rdDSpPBSeCm8FF5GeKMjwnv0tB1nU7KvR4nxHlQo5S6w6xMjvIzwMsJr3eGX78KrbvqxE6cx8Kk3MXn8UJQqkWjdHuVzSxReCi+FN3KFVyK4WoueKCQjvNon0wlD05UfzLDN59N0oV0dhZfCS+G17vANq/Bu2b4HW3f8i4b1aqBBnWqw2bLunP/ZcwAPDX8New8cwYrZk5FYLN66PcrnliJVeDPeXoDMzQe9NDyHzgAHTgIVSsBWNXtWDHu10oh98iZNau5ftyPt8W9hq1YGjraNNMtk/kjhpfBSeBnhjY4Ibz5fPoKujsJL4aXwBj1MdBcIm/B++t18vPDWJ94Nadm8Id5/9TH8uX4bBjz5BuLjnJj44lA0aVhb98ZGYsFIFd60h7+Ee8WuoMhs9Sog/qNeFN7J98DetGpQXlIgfcxsZM7eAMdVdWFrkJS7zrl0uL5YBVvZRMTPGqirTasKuSYvRsZHyxHz4DVw3ne5Vc3qaocfnsiNiR+eKHwfntA12POpEIWXwkvhte5gC4vwpqSm4+Ib++LaK1tgYK/bcPjoCTw57j1l/t1lKzcq0V6R3coVy1q3JwXUUqQLr6NlLaB88dx0zqQi89ftoPB+DPfG/Yij8Jo+gii8FF4hoCddxPRgKyINUHgpvBRe6w72sAjvtp170ann0/jhwxdQt2YVZWu/mrkIo1+dpkjw+KcfRLGEwpvG4Is/coX3K7hX7IS9bSPYq5XJNWI8x5OROX0d7PUqIu6jnozwUnhNn1UovBReCq/pw8ivAQovhZfCa90xFRbhVb+i9vusiShZvJiytSvWbEHPR17Eqp/+h4T4WOv2oIBbovAyhzfXEGRKAxzZMzt58Rza48HuLR40vtyONl00CgD44ycXVsxzo0odoFo9u+bRLb/LMui1wOcRK16s4ktr2idXK9gW8Gm70KyewkvhpfBad7iGRXj/3LANPQaNxfSpY1C8WNZHJTZs2YlHnn0bsz8Zj1hn9sUuqUJZTktmXX96W0p7mBFePVjT+jKlQQ8nPWUY4WWElxFePUeK/jIUXgovhVf/8RKsZFiFN9jK5fffZr7Dacn0gDJYhsKr7+t9FF6DAyuP4hReCi+F17rjSVqi8FJ4KbzWHVNhEV75ktry1Zt1beUN11wEp0/EV1elCCrElIZClNJwLh0p17+ua/Q4e1+FmF5XapaN5lkajux149cZ/hPtdx6gnX6QE060Cm9CIhDjzD0U3B4g+RRQugLQ4wnt9ArO0sBZGnSdcAIUovBSeCm8Zo4g/7phEV7rNi/yW6LwUnhzjdJCnMO7d7sb3090+e1SXrmyvgWjVXiDnYVKV7Ah3PPwfjwuAyePeJBYCtD6MGWGC0g9C9S+wIYOD2jYOYC1S9xYOt2FpBpAzYba+dFrF7uRngbc/0wsSmRP1+0s4iyvAAAgAElEQVSHgDm8wUaEdb9TeCm8FF7rjicKr0mWFN7gwivTfiE900s649PlcP/+D2K6XwLH5fW8f7eVLQZbrXKaPeL65A9kTFwEe+MqsF9SK0CZFUC6C/E/DYatpEZKgxrhddgRc99lmm24V++Be91eFNUIb2qKB0f3ebzS27l/TMCXx4pKhLdafTtKlMo9XNLSgH82uPM1whvsdEXhDUaocP1O4aXwUnitO2YpvCZZUniDC29q50nwHDodlLTjhkaIHX0rhTcoqcAFrPrwhBrF0xvdlS2K1ghv/eZ2lKmYm3lKMrBhmQhv/kV46zSxIy4u97acOQlIdJ7Ca+LgicCqFN7IFd7UdBu27bfjm6WxKJ7gQZerM1ArKTuwk9dwqlmpJFwuF4YMHQ6HI3faz+pVK7B44Xz06TcQFF7rDkwKr0mWFF4DwluhOGDXeJSamgGcSgGF1+RgBBCK8Grl7e7dkZXHW62uf39d1dGOCtW0H4dTeHP3H3N4mcNr5qim8Eau8O486MC0n/1z90f3SNHV3RReXZgsL0ThNYmUwqtDeDtNhOfwGTi6XgRb8dzhKc+OI8hcvA2O6xsh9jlGeI0MyfSX58K981h2lQOnlGi6rXIpIKmk9+/2+hUR+8j1mk1r5e0G2oa8UhwovBReIcAvrRk5gvMuS+GNXOE9cNyOOSv98+V7tUvT1fkUXl2YLC9E4TWJlMJL4c01hPLxpbXU3h/Bs/lA0FFsa179/+xdBZhUVRv+dnaXpbsRRAlFaQEFkZKUFKW7u7u7u7tTQARppUvEIERApTsEJLd3/+c9+5/hzsyduXfm3h02vvM8/+PPzrnnnvt+J97znS8o4dyGLglvoqTOnZmuX4ygwBdETHhfQ+hNk4aV40Lp6cNIyv+phRImcRTj4/uRdOlMJJs0aM6E2FWBCW/MJbxGRhITXiPoef4sE17PsRNPRifhjXweRGFLj1H44X+IngeTpXBW8u/6OflkVvGgsfuOmBSHN4g1vAZHmfPHJeG1FH+XfFJGZTW0KUgh/fNV0kN4k6UiylNM/Qr6wslwev6ECa8SWya86mOFNbzmTXcmvLZYPgv0oSmbEtr8sVP1IEqfMtI80L3QEhNeL4Cs8gomvAZxj07CG7rkKIUtOWbTQ99C2SjBnAaavWbCGz+iNAS3XkkR5++Sb7V85JM+mcO4iLz7lMJ3/UmWQlkpYI5rDS8TXlv4OLWw+jLDYck0l1/TKhglvKev+NJ3x17bmSZNRNTna312pqZ9hIkNMeHVl1DJRMjjVFNMeA2KMzoJb3CntRRx6qZDDxMd76fZaya8THgxSJjweq6FZMLLhFdzoY3mCkx4oxngN9Q8a3jfDPBMeA3izoSXbXgdhpAXbXhZwxt9pIwJb/Rha3DZjTePGyW88QaoWPahTHjfjMCY8BrEPToJb8ioHRS+65xND30yJqeEmzto9po1vKzhZQ2v5jShYpV86eNK6lpgJrxMeLVHUPTWYMIbvfi+qdaZ8L4Z5JnwGsQ9OgkvnNZCp++zkl7YYSbo9jn55M6g2WsmvEx4YzPhDUhEFJDQR3WcP3sS5aDiKimGtDPVmih6CG9MyrTGURq0JBq3fmfCG7fkKb+GCe+bkSsTXoO4RyfhNdI1JrxMeGMz4dUz9t3JArd5TijdvhzpMqya/TulhlerLynTETUZYBuAXj7DiSc48YTW+HH1OxNeI+jF3GeZ8L4Z2TDhNYg7E1624XUYQmzDS75+jhPr/o1Iun4xkvIWt1DZOioViOjn3WF08ocISpuZKF1m9YxuF36NygKnl/D+vCecLv4SQc8eR1Keor5UrJKFkqdW1x4re/3TjjC6c/V1uKOXT4mePoqkxMmJUqZ9/TyiW1RsZBuAnglvpEtzEYPLbrx5nAlv3BQ1E943I1cmvAZxZ8LLhJcJbxQCMSnTmlIm9uYNrpJnuFoOzh6NoEObwyjfpxYq85U6Ybd/njW8rOE1ssUw4TWCXsx9lgnvm5ENE16DuDPhZcIbVwhvQCIfSptFXfP57+1ICg50bRIQUwkvNLzKkqeoPg2vvVyZ8EYhwnF4DW4abjzOhNcNsGJRVUl4tbrcpn1nGj56orVa5jQch1cLM1e/M+E1gl40Z1oz0jW24WUbXowfd+Lw6hlvsSW1sJ5vcbcOE14mvO6OGSP1F+0KoFv/vjbrKVcglErnDzPSJD8bQxBgwvtmBMGE1yDurOFlDW9c0fAmSEiUzomG9+HtSAoJij2phQ1Oa9XHmfAy4Y2OceWsTSa83kT7zb6rSf0vaf/ePbRy3Wb6vEJlp51hDa8xOTHhNYYfMeFlwusR4X0eTJGX7usafT45MxAlC1Cty4kndEFoSiUmvEx4TRlI3AgjYIcAE17vDAkmvAZxZsLLhNcTwhvx+00K7rxW1+gLmN2QLIWzRjvhTZzMh95+Xz0ywvWLEfTqufdseI3G4dUFrJuVmPDaEl5EvFAruA34904ER2lwc3xx9fiLABNe78ieCa9BnJnwMuE1RHj9fYlSJ1EfhY9fEoWGk7cIr56p4C0bXj190RuWTE9beuow4bUlvFqYuUrqofUs/84IxCcEmPB6R9pMeA3izISXCa8hwpshOflVzas6CsN2nCO6/yzaCe/DWxF0ZKttJANn0+Kzmr6U7i11LbAZURqQRe35o9dvf3gngo5sCac0mYhKf2kb6zZLTu1Yugant83jTHij4EASD2WR9t1pMvtQQoWvKKJh5CnGYcnMHIPcVtxEgAmvd+TKhNcgzkx4mfDGdsJrcApYHzeD8Nr35falSNo8N5Qyv+tDX3VWT+5gVv+12mHC64gQyO+/d0iErEubxUIFP/Nhkqs1kPh3RsAOASa83hkSTHgN4syElwkvE94oBJjwOi4mcTHxhPIr7ZN6sBmDwQ2FH4+XCDDh9Y7YmfAaxJkJLxNeJrxMeJ0tI3Gd8N66FJXmWRakbNaTttngssuPMwJxCgEmvN4RJxNegzgz4WXCy4SXCW98JbwGl09+nBFgBIiICa93hgETXoM4M+FlwsuElwlvbCC8Z49E0KHvwihJcqIUadV7fO96JEWE+1CLoQkoaUqDiyM/zggwAroQYMKrCybDlZjwGoSQCS8TXia8THhjE+HVs+Qx4dWDEtdhBMxBgAmvOThqtcKEVwshjd+Z8DLhZcLLhDc2EN771yPp2oXX4ecCXxL9cSyCEiYmyl/SNtRcoTL+lCBhpMHVkR9nBBgBPQgw4dWDkvE6THgNYsiElwkvE14mvLGB8Nr38fH9SFozIZRSpfehxv3fbMg3g8swP84IxGoEmPB6R3xMeA3izISXCS8TXia8sY3wXv0zkrYveZ1AwtePqOPEBAZXQ36cEWAEPEGACa8nqLn/TLwhvIFBIfTkv2eUMX0aslgcMzRFRETSg0dPKG3qFOTn65gd6PmLVxQWHk6pUiSzQZkJLxNeJrxMeJnwur/58BOMACMQhQATXu+MhHhBeLsMmkH7j50SiKZOmYxqVf6MerWva0X40E9nqPfIefQqMEj8bViv5lS3ehnx//G3fqMXWJ/P/0EOmjW6qyDGKEx4mfAy4WXCG9sIr3e2F34LI8AI6EGACa8elIzXiReEd/bS76himaKULUt6OvHbeeo0cDqtnzeU8uV5l6D5LfVlV+rc8ktqVLs8HTx+mroNmUV71k2itzKlo8Vrd9DGbQdp1axBlChhAurQfxq9ky0TjerbkgkvEYXvYMLLhJcJb7QT3rGh9PTfSEqflchPxdw26BXR43tE73zoQ9VasT2u8a2RW2AEvIcAE17vYB0vCK89lOXq9KD6NctR28bVCdrdjgOm0akfFlGCBFEbxReN+wny26h2Bfq6zTCqVKYotWlUTfy25+BJ6jl8Lp07sIx8fHxYw8uE13GmvgqhsPW/kk/qJJRwe2fVmRzx+00K7ryWKENy8quaV7VO2I5zRPefUcDshmQpnFW1TnDrlRRx/i75VstHPultzW3wQOTdpxS+60+yFMpKAXMaRuuqYnZq4Qu/RNDpQ+H0751ISpCIKF1mC9Xu5Bet3+CcuEbSqUNhdOMiSKcPFSztR+8VdjSNsn/etExr/ye8Wh/PhFcLIf6dEYh5CDDh9Y5M4h3hvX7rviC0c8f1oNLFC9CGbQdp+Te7aOfqCVbEYQKRPWsmYfZQtEp7Gt2vlSC9KOf/vkZ12g6n49vmUIpkSZjwMuFlwvt/BMwmvD/vDqOTP9imru0y9c04Vh3dGk6nDr0O6fV2Hh+q0UZbk2oW4T1zNIKCXrzG4tqFSHpwM5Left+HMmR7TbxTZbBQ7kK2Ica8s5XwWxgBRsBTBJjweoqce8/FK8L78lUQNe48mpImSUzLp/cnX1+LMFnYfeAkbVo0wooc7HmTJk5Ew3o1o7xlW1jJMSpcvnabajQfRHu/mUKZMqShf58Gu4e4l2q/7LKewn6+Sv6VPiBL1lQOb4189IJCvjtDvrnSU9I1rdQ1jIf/oZe9N4nn0Y5aCd32B0Xcf0ZJFzQi30LZVOs8rz5H1ElQrwj5JAtwqBNx6SGFHvyb/Ct+QIlH11RtI3jlCQqafYB882Umv4/fUa0TsvJnigwJo+R7u5NP8kSO3/wqhJ6VmULka6GAFsXVv/nX6xR++hYlbPsZBbQuqVoncMR2CtnxB/l9lpN838ug+p6Qtb+QJXUSSra7q/p7frtBLzusIZ+MySlBtXzq37P9D4q894ySzGtEfh+pY/uixQoK//MO+VfPT5YMjhreiDtPKXTnOfItnI2Szm8UraNvZu8gCg0hKlbel+D1b1+QxevqhQgq8Kkvla+nTRafPY6kp49sY8FmzfVmyNz1ixF0+8prwpsqgy/l+Ui7L9cuRtC3c0MoRRof+qCoev3zv0SI7/yqYwLK/r52m8B138ZQOn0knMp97U+FSjk62UaroLnxeIfAlXsWOn/dQk9e+NC7GSOocK5wSvRmzp5xEvv6dWrSvh/30LoNW6h8xcpOvzFtCsf9M04CEk0fFW8IL2x1uw2ZSfcePKaVMwdSyhRJBaR6NLxj+remiqWLiPr2Gt7g0NebYDTJyKNmH7ZdQ8HHr1Ciqh+SX7bUjiTz3xf0cuMp8s+dgTJsbqv6jqADf9O/Xb4hv7dTU6IvPlSt82rLGQq/+4zSrWhKAR+9rVrnXvkZFAbi1rgoWZIldKgT9vcDCtz3FyWu8iGlnlRbtY3nS47T02n7KEGBLBRQ4l3VOi+W/CQIb+ZjvcmSQp3w3i42gXz8fClpmxKqbQT/fI1Cfr9JyTuVpuQdSqnWeTzoe3q19QwlLJOL/PNkdCS8L0PoxcqfyTdNEsp0qKf6e365Tg9brCRLpuSUpFYB1Tovt5yhCGC7rCkFFFXH9kGDpRTyx21K/GUB8s2Y3BHb208p8PuzFFDkbUq3vKlHY0nvQ2M6vhCEt2Rlf/JV4bO3r0bQpXPhVKS0P1VrEj8W7st/htOqaYGUKq0P5S+ubo5x9kQ4PXkYQU16JKIcH+ojrzvWBNMvB0Lpi4YBVKyc9uFBrwy5HiNgj8CZKz60aJftQSxXlkjqVsv29oWR8xyBmjWq0Z7du2nL1m1UuUoVpw0F+OtbHzzvSdx+Ml4Q3mcvXlHXwTMpMDCYFkzsZSW7EK204T3942Ly94/akCo16ENN61S02vBWLluMWjesKn5jG17bCcFOa44aXmIbXlUN7/0bkXT9YiTlLW6hsnXejC2ut5dzs0wa7Pt98NswkSWtdG0/hyxp3v5Gfl/cRmDZDwF07b7jzUP/eoGs5TVJ9GzSYBKQGs3EecL7KjCY6rcfIWLoThvRmZImidL8WSwWypQ+NeH3olXaUb9ODaihSpSGRWu206bth0SUhsSJAqh9v6kcpUExqJjwMuGVw2FevxAKCyVKmoLIR8WfKySEKPgVUb5PLVTmq/hCeCNp64JQ8vMjShR1qeRQAl8QhYUR1WrvT1lzazvCoQEmvN7ZIPktRM4Ib4eqQZQxNaefNmOMMOE1A0XtNuI84b3/8AkhKoN9QTzeI1tmiT8jRi8c1WQZ3L0JNaj1ufgn7H5h03v4xBnx77zvvUOzxnSj9GlTin9zHF4OS+YwuOK5hldr2YlfGt4owqunMOHVgxLX8TYCm48loDNXbK/SE/oTDagf6O2uxNn3MeH1jmjjPOHVC2N4eATde/iY0qdJaTVtUD779PlLCg0NsyackL8x4WXCy4Q3CgGp4c1d2AK/QIfy5EEk3bsRGa80vNBoI6yasmyeG0WAa3e0tb1Nm9mHAhLrW7FYw6sPJ65lHAE4qkHL+/Tl69uHWiVCqFCOmOm/YvyLvd8CE17vYM6E1yDOTHiZ8DLh/T/h7R9CYSFEH5WzsA2vi3VlVs8Q8auREGtMeA0u3Py42whc/b8db8okkZQqKZsyuA2giweY8JqJpvO2mPAaxJkJLxNeJrxMeN1ZRpjwuoMW12UE4j4CTHi9I2MmvAZxZsLLhJcJLxNed5YRJrzuoMV1GYG4jwATXu/ImAmvQZyZ8DLhZcLLhNedZcQo4X10l+jErjC6ci6CCnzmSwVKWURiCy6MACMQOxFgwusduTHhNYgzE14mvEx4mfC6s4wYJbzfLwwV8YxlKVTal0rW5ID07siA6zICMQkBJrzekQYTXoM4M+FlwvsmCW9Q65UUef4u+eROT5RYJdfn82CKvPyQfApmpYRzGxoc7a4fn8dOa7rwNUp4j20Po3vXXhPe3IV8ReQLLowAIxA7EWDC6x25MeE1iDMTXia8hghv0gDyBVlVKeF/PyB6EUwBsxuSpXBW1TrBrVdSxPm7mqPYUigrBcxhwqsJlBcqGCW8Xugiv4IRYAS8iAATXu+AzYTXIM5MeJnwGiK8OsafK8LLGl4dAMawKkx4Y5hAuDuMwBtGgAmvdwTAhNcgzkx4mfAaIrxJEpBPLnUNb+Q/D4hehujS8PpWy0c+6ZM5dCXy7lMK3/UnsYbX4EQ38XEmvCaCyU0xAnEAASa83hEiE16DODPhZcJriPBmSE5+VfOqjsKwHeeI7j9jwmtwjsa0x5nwxjSJcH8YgTeLABNe7+DPhNcgzkx4mfAy4Y1CgJ3W9C0mTHj14cS1GIH4ggATXu9ImgmvQZyZ8DLhZcLLhNedZYQJrztocV1GIO4jwITXOzJmwmsQZya8THiZ8DLhdWcZYcLrDlpclxGI+wgw4fWOjJnwGsSZCS8TXia8THjdWUaY8LqDFtdlBOI+Akx4vSNjJrwGcWbCy4SXCS8TXneWESa87qDFdRmBuI8AE17vyJgJr0GcmfAy4WXCy4TXnWWECa8tWg9vRdDJHyIoJDDq73mKWej9opw5zp0xxXVjNwJMeL0jPya8BnFmwsuElwkvE153lhEmvK/RCgqMpG+mhNGzx69TJePXLzv60Vs5mfS6M664buxFgAmvd2THhNcgzkx4mfAy4WXC684ywoT3NVq3LkXQd3PDHOArUMpCpWr5uQMr12UEYi0CTHi9IzomvAZxZsLLhJcJLxNed5YRJrzahBcmDRUaMOF1Z1xx3diLABNe78iOCa9BnJnwMuFlwvt/wtsvhMJCiXIXtpCvym30kweRdO9GJOX71EJlvoq/ZIYJ7+sZA1OGdZNDKSTIdhaVrOlLhUr7Glyd+XFGIHYgwITXO3JiwmsQZyXhjbzzlCLvPdXVoqVwNl31PK0U3H0DRZy8SpaKecjyViqHZiIfv6TwLWfIkjM9BaxsofqaiKOXKLjvt+TzViryrZhHtU74Dia8THhtCa/WmGXCGyIg6jI1gRZU8eL3CyfD6fCWcCvpZe1uvBA7f6QCASa83hkOTHgN4qwkvKFLjlLYkmO6Wkx0vJ+uep5WYsKbyBG6VyEUWH4aQf3o1+wTdZL/2w2KOHOL/FuXJL+Wn6rWCRm9k8J3/kG+JXOQT+4Mqu8JW/8r+aROQgm3d1Z/z+83KbjzWqIMycmval7VOmE7zhHdf0YBsxuSpXBW1TrBrVdSxPm75FstH/mkT+Z4sLn7lMJ3/UmWQlkpYE5DT4eTrue2LggVGl5ZHt+LpKBXRKkyEiVK7GP9e478FipYKv5q71jDq2s4cSVGIN4gwITXO6JmwmsQZzXC65M0gAj/UymR956JvzLhfQ1O5OWHFH7oH/Itn4cSjKyhTv5W/0yhcw+SJW9mshTL7qTOSaKQMEq4uyv5JI8lhDdpAPnmTq/6PeF/PyB6ERxrCK/9R+xYGkZXzkXQFy38KEc+9riX+DDhNbjo8uOMQBxDgAmvdwTKhNcgzmqEF9o0S+G31UnZkqNMeO2QideEV8f4iy0aXia8OoRJREx49eHEtRiB+IIAE17vSJoJr0GcmfCyDa/DEHoVQlomDZF3n1LYjrM2j4YtPS7+7deyhM3f/armJ59MKVRHakwyaWDCq28xYcKrDyeuxQjEFwSY8HpH0kx4DeLMhJcJryeEV23YBZaY4Lb2nwmvwQn8Bh5nwvsGQOdXMgIxGAEmvN4RDhNegzgz4WXCy4RXfRKxDa86Lkx4DS66/DgjEMcQYMLrHYEy4TWIMxNeJrxMeJnwurOMMOF1By2uywjEfQSY8HpHxkx4DeLMhJcJLxNeJrzuLCNMeN1Bi+syAnEfASa83pExE16DOMdpwnvsMgX32STiu1o+Uo86EX7iCtGTVxQwvxFZ8r+limZQrbkU+eA5+db9iETINrsSH6M0qAHFNrwGJ2MseZwJbywRFHeTEfASAkx4vQM0E16DOMdpwvv/TGt6IAqY25AsBdWTIzDh1YMgERNefTjF9lpMeGO7BLn/jIC5CDDhNRdPZ60x4TWIs9mEN/z3GxTSeZ2uXvm1+pT8W5VUrWtKprX/a3gpwI8oZWL1Pj1+SRQa7lrD++U8irz/jChdUiKLSgKCoFCip4HkWyEPJRgRPxJPsIZX1xCPk5WY8MZJsfJHMQIeI8CE12Po3HqQCa9bcDlWjtOE9/8aXp+3UpFvxTyqSIXv0G/DqwV1fMq0xoRXazTE3d+Z8MZd2fKXMQKeIMCE1xPU3H+GCa/7mNk8EV2E1ydjcvKtml+1dxG/X6eIUzcp2jW8ZhHe/2t4fcu8R5TI3+GbIu/8RxFnbrGGl+PwGpyNseNxJryxQ07cS0bAWwgw4fUO0kx4DeLMhFe/hteY09pJCp17QDjQUWb1rGORZ+8QRURQoj3diZI5OsfRqxAKLD+NyNdCfs0+UT9M/HZDkG//1iXJr+WnqnVCRu+k8J1/kG/JHOSTO4NjHR2Z1ljDa3DixcLHg18RnT4cRid/iBC9L1bRQgVL+1FAolj4MdxlRoARMA0BJrymQemyISa8BnFmwustwvszhc49qEtaCXd3JZ/kKiyCCa8u/MyqxIknbJF89iiSVowJtfljsyH+lDyVj1mQczuMACMQCxFgwusdoTHhNYgzE15vEV7W8KoNVU4tbHACe/FxqeFVvpI1vF4UAL+KEYihCDDh9Y5gmPAaxDm6CC+lTkK+n7yj2ruIvx9Q5KUHsceGN6bE4Q0OpcCyU6MwzZBcXfIvgohehpB/21Lk17y4ah02adA3aVjDqw8nrsUIMALxGwEmvN6RPxNegzhHG+HV0a9Y47QWUwivNGnQgS3b8OoASaMKE17jGHILjAAjEPcRYMLrHRkz4TWIc3QRXh9/X6I0SZxoIYMp8kUwa3jt0AlbfZIoJIyc2vBKDa/FQr6VPlDXnv9znyIvPWQNr8F5gceZ8JoAIjfBCDACcR4BJrzeETETXoM4RxvhjUthyWKahpejNBgc9foeZ8KrDyeuxQgwAvEbASa83pE/E16DOMcHwqsHIk4trECJw5IJMJjw6pk5XIcRYATiOwJMeL0zApjwGsQ5phNerc+z5ExPAStbqF/v/z/xhFYb+J0JLxNe+3HChFfPzOE6jAAjEN8RYMLrnRHAhNcgznGZ8NpDExkcRkFlpxD5+1KiQ711IxfEJg26sAqMAZnWnj2OpCNbwun25UiRECFLDguVrGWhhIncjxXLhFeX2LkSI8AIxHMEmPB6ZwAw4TWIc0wnvJaKecjyViqHr4x8/JLCt5whVxpeJrzxL9Pa5jmhguwqS4FSFipVy8/tmcKE123I+AFGgBGIhwgw4fWO0JnwGsSZCa82gKzh1cYINTzR8Aa1XkmR5+8SpU5M5K9CSkPDiB6/Ip+CWSnh3IaaHZnVM8ShTpYcPlS7k7/ms/YVmPC6DRk/wAgwAvEQASa83hE6E16DOEcX4dXTreiOw8saXtcaXi0Z+aROQgm3d9aqZv3dEOHVeIsRwpsmsw817M2EV7cgueIbQeDqfQtdv2cR706ZNJIK5gh/I/3glzIC7iLAhNddxDyrz4TXM9ysTzHh1QYwrmp4tb7cG4Q34q/7IjOcLKHfn6KIHy6Qb/X85Fcpr/XvPskCyCdXeq0u09rJofTojq1Jw/tFLVShAZs0aILHFd4YAqcu+9KW4wls3v/J+2FUpWjoG+sTv5gR0IsAE169SBmrx4TXGH5kNuFV605wp7UUceomJZjdgHwLZ9PV4+DuGyji5FViG14FXDLTWhyKw2s/GMLmH6LQlSfIr10p8m+mnhrZ1QB6eCuCjmyNclpDAdn9rJYvO63pmnVc6U0hsOyHALp2P0q7qywjmgS+qS7xexkB3Qgw4dUNlaGKTHgNwUdMeHXgF1c1vL4lc5BP7gyOCHgxDq/ZhFeHOHVXYRte3VBxRYMIzN2ekO4/cYwkwoTXILD8uFcQYMLrFZiJCa9BnGOuhvcbijh5jXyLZidKm9TxK58HUfjRS+STMx0lXNlSFwpGw5JpvcS3fB5KMLKGarWw1T9T6NyDZMmbmSzFsjupo5FaWGp4tTpCRP6tS5Jfy5hvw8uEV4cwuUqcR2DdgQR08ZavzXcm9CcaUJ81vHFe+HHgA5nwekeITHgN4hzdhDd0yVEK33mOIu8+Jd8v8pF/y+4BRcUAACAASURBVE/JJ3MKzV4Hd48ivFqFCa86Qkx4tUaO9u+s4dXGiGuYgwAc1tYfCKAghclurRIhVIgd18wBmFuJVgSY8EYrvNbGmfAaxDm6Ca/03Jfd1GvHGzp7P4Wfv2f9usj7z4nu/keULhn5ZElp/bvlrZSUYOAXulDwVMOrbFzaI8u/+TctTn7tS2m+3xQNr8pbgtuuoohzdyhgfmOy5M+i2Q+1CuE/nKeQ4dvIlYZaT8OeRGmwb9eoDa+efuqtw4RXL1JczwwEAkOI7j2xUFCID2VMFUGpkto6X5rxDm6DEYgOBJjwRgeqjm0y4TWIc3QTXmh4lcWvSj5dGl4HIrT2JIXOPkB+9YuSf9dyHn21GYTXoxcTERNefcgx4dWHE9diBBgBRiCmIMCE1zuSYMJrEOfoJrwGu2d9PCyOEF49eCTc3ZV8kifSU5VYw6sLJo8qsYbXI9j4IUaAEYhnCDDh9Y7AmfAaxJkJr0EAdT4etuYkhc45oKt2oj3diZIF6KrLhFcXTG5Xso/n+2l1Xypc1tapyO1G+QFGgBFgBOIgAkx4vSNUJrwGcY4vhDfi8kMKbrLUBq2EWzuST7pkBhF0//GIA39R8KAtrx9MkoAS/djD7YaCqs6myCcvrc/5D61GfpU/dKudyFM3KGTDbxRx6G/yeTct+dUrSn7V87vVhqwcl2x4mfB6NAT4IUaAEYiHCDDh9Y7QmfDqxPn5i1cUFh5OqVLYEjwmvN4nvCCZwYte2zb7JPKngCl1dErydTUzCG/Y0uMUuviItVGETQtY2MTtvuCBuER4PQKAH2IEGAFGIJ4h0K1ja9r7427678ljyvNBXuozYChVqlJNFYXMafSZ6sUzCHV/LhNeDaheBQZRv9ELaP+xU6Jm/g9y0KzRXSlt6qjQYGqE1ydnerLkVk/jihBjKImO99MtJDMqmmHDa0Y/4lobIN9hv123fpZPhhSs4Y1rQubvYQQYAUYgmhAo9UlBunzpb2vr4ybNoKYt2jDhjQa8mfBqgLp47Q7auO0grZo1iBIlTEAd+k+jd7JlolF9o5I1qBFePXLyJuGNOHaZQjf8QhG/XBeJG/zqFSHfz/Po6SbX8SICRjW8MPUI/eZXijh7iywfZSO/OkXIt1QuL34Bv4oRYAQYAUbAHQRO/f4rBQa+sj7ybo5clDFjJia87oCosy4TXg2gvm4zjCqVKUptGkVdMew5eJJ6Dp9L5w4sIx8fH3UNb9IAIvxPpUTeeyb+6k3CGzJhN4VvPWPtjaVULgoYX1vnEOFq3kLAKOENGfo9he+9YO2u7xd5KcHgqt7qPr+HEWAEGAFGIBoRYJMGY+Ay4dXAr2iV9jS6XytBelHO/32N6rQdTse3zaEUyZLQ81evU/u8nH+YXi44Qj7JEpLFCeENv/tUtJP+1CBjknPj6ZDDlyjk/G3rE/7vpqOAih+40QJXjW4EXi04Qi/mHxavSdq+FCWslp8sWbQz6in7FbLvIoX8c/+1nN/LRAFlc0d317l9RoARYAQYAS8gkCyxvxfeEndfwYTXhWwjIyMpb9kWNHdcDypdvICoefnabarRfBDt/WYKZcqQxubpx7MO0JPZh3SNlhx/DddVjyvFDwQuv2c7HjKvbE6JPs4ePz6ev5IRYAQYAUaAEYhmBJjwagAMDe+Y/q2pYukioqYrDW/47f8o/E6UBjfi7lMKv/OftXVL0oTk+14G678TFH07mkXLzccmBF7Mtz0oJa5e0G0Nb2z6Xu4rI8AIMAKMgHsIsIbXPbzsazPh1cAPNryVyxaj1g2jbCFd2fAaEwU/zQgwAowAI8AIMAKMgDoCbMNrbGQw4dXAb9Ga7bRp+yERpSFxogBq32+q0ygNxkTBTzMCjAAjwAgwAowAI8CENzrGABNeDVRfvgqi3iPn0eETUVEO8r73Ds0a043Sp00p/q0MSxYdAuI2GQFGgBFgBBgBRoARYA2vsTHAhFcnfk+fv6TQ0DBrwgn5GBNenQByNUaAEWAEGAFGgBHwGAEmvB5DJx5kwmsMP9bwGsSPH2cEGAFGgBFgBBgBbQSY8Gpj5KoGE15j+DHhNYgfP84IMAKMACPACDAC2ggw4dXGiAmvMYxcPs0mDdEILjfNCDACjAAjwAgwAgIBJrzGBgJreI3hxxpeg/jx44wAI8AIMAKMACOgjQATXm2MWMNrDCPW8EYjftw0I8AIMAKMACPACGgjwIRXGyMmvMYwYsIbjfhx04wAI8AIMAKMACOgjQATXm2MmPAaw4gJbzTix00zAowAI8AIMAKMgDYCTHi1MWLCawwjJrzRiB83zQgwAowAI8AIMALaCDDh1caICa8xjPhpRoARYAQYAUaAEWAEGIFYjABHaYjFwuOuMwKMACPACDACjAAjwAhoI8CEVxsjrsEIMAKMACPACDACjAAjEIsRYMIbi4XHXWcEGAFGgBFgBBgBRoAR0EaACa82RlyDEWAEGAFGgBFgBBgBRiAWI8CE14vCCwkJpQQJ/A29MTIyknx8fAy1seH7A1StQnFKnCihoXYiIiLJYjHWF0MdUDwc1/oS174nNDSM/P39DIn70E9nKFuW9PROtkyG2jFjDhnqQBwetzEJl7g2h2LSuDVDzmbtQ2bsq/geM8aLGW2YgS23oY4AE14vjYyffv2Thk9ZTt8tHU2JEwV49FYseJPmrheEt0/H+h61gYfK1elBM0Z1pXzvv+NxGy9fBVGngdOp8VcVqPxnH3ncjhkPXrlxl3oNn0NTh3cyTIaM9kf2ZfGUvpQmVXKPmotJ2JrRl+CQUOo+dDZ99nF+avjl5x5hgoeGTV4m5Nu8bmWP2zBrDnncAcWDZmBrRj/Qhhnj1uy+GJnPMQlbM/oSk8atWXI2Yx+6c+9fatFjAk0b0Yk+yJ3d4679cOhX2rT9IC2Y2MtjhZIZcvb4A/hBXQgw4dUFk7FKILute0+iyUM7UJVyH3vUmFzwdh88SVkypqP8ed71iPTeffCYytftSaf3LiF/P1+P+oKJ3b7fVPHstZt3aViv5oZIb2BQCP14+BfRhrtaZ2zUzbqOpaDgUOrZrg41qOU5ocL3PHz0H/38+wWhAXe3yL7Uq1GOOrf80t3HRX2Jra+vhW7cvk9DejSlsiUKedQWHjKCrX1fBnVtQp9/Vtitvkiy+9+zF7RwYi9KljSxW88rK1dq0IcmDWlP+T/I4VEbyjmULnVKKlLgPY/mkHy5mdi+STmbMW6VAjFjDhmZz2aMW+X3vGk5mz1uoYU88vNZw7clRuRsxj4Estu4yxixbwzo0shjogqy22PYbJo/oac4lHtS5Ji7eOkGffZxPqF8cbeEhoXToZ9OG9pL3X1nfKvPhDeaJW422V0xYwClTZ2S2vaZTKU+yU9tGlVz6wv2HDxJ3+44TAsn9XbrOVlZTuxECRMILfGtuw+oZY8JHpHep89fEq61Fq7eTgkD/KlE0bw0YVA73f2SG3X7pjVp/sqtQnueNnUK3c8rK4JcLt+wh7b9cFz8uX/nhvRV1VK62zKDNNhje+/BI2radSytmDmQ3nXzGt8otvZ9efjoCTXvPl7Ip2jB93XhYibZffDvf1T26+50+sfFHplGKEkD5lDK5Empbd8pVDhvLrdJr9nYvkk5mzFu5WAwaw4Zmc9mjFv5PTFBzmaOWxCqPQdO0sLV2+jJ0+fiMw98O538fN1TfBiVM95rdB+KiWQ3c8Y0FBgUTDUrlnRbMQDZ9Bu9gC5dvUWbFo0wbPqoa4GOh5WY8Eaj0H85fVGQBGea3WcvXlFyDY2XXPBWbNxDNSt9SmP6txYnWSxYFev3oe+Xj6FMGdLo/oqxM1dTujQpBVHG+/+4cIVwKm1Qq5ymdlVuJr//8Td1aVmb2jetId77z9VbbpHe+w+f0JrNP9K6LfupQqmPqEX9KjR4/BKqX6scfVnlM13fIjfqzi2+pGxZMtCKjbtp/oReup5VVvrzr2u0ZN1OofFoXrcSVSxTlGq1GEw7V0+gt9/KoKs92ZfH/z2nZdP6U7FCtoQQxC9Aw3ZbYgut+5xxPQgHCpS5K7bS8xevqF+nBrr6Yga2SjmP6tuSan8RRfyP/XKORk5dQXvWTdLsS1h4OHUZNJOcaXbxTe5oe6GF2bDtAC2e3Idgs3fh0g06de4fKv1JAU0zFuUcgvZl1uhugjSjD+6QXjOxjQlyNmPcYiCYOYeMzGczxi2+J6bI2axx+yowmLbsPkqL124Xt4NYt0+euiBus8YOaKM5l2UFM+Qs2zKyD6Hf9dqPcKrZ1bOvoh9Ss5shXSpaN3co4b/K4s66DbILJQn25CNbZlLCgKj1W0+RZPfug0f0TtaMdOL382J/1bsX6nkH14lCgAlvNI0EaKSqNulPQ3s0peoVSzi8Zf3W/bRy4x76fsVYpyds5el+0aTeNHXhRqHBHNi1Md2684BqNB9EGxYMpw/f02e7hPbQp8wZ09Kjx0/p7yu36ONCeahIwfepStliLomDUnOC69d2fafQV1VLU6sGX4hvA+nFN39aNK9TRLHBLlu/izbvPCyupXEQyJIxLf186gL1HjGX9m2YqutkqyS79WqWo0HjF9MnhT8QOOMbQeJ3HThJdauXUf0m1IHZwuJ1Owga+Lo1ylLPtnUEAQPBxClb75WUUkP2abG81LbPFJoztruV9IJIj56+irYsG2MlsfYASWyfPntBWGSXTO1Lb2VKJ6oNHLeIAgIS0LCezVyOVLOwVcoZ14QwXcHhCNpubJpjZ66hn7bP0dQKzVq6mfYf/Z1WzhzoQGwfPXlGLbqPp7aNq+s2HcEGiQNkiuRJxX/z5HpbaJpLFy8gZO+sKOfQkil9adbS7yg0NFTIV5JebHyutPlmYxsT5Gx03EbHHALZ9WQ+Q/ZmjNuYJGczxi2UIthnlq7bJabHwkm9qFDeXATNdYnqncSNWO5333K5rpgpZ/kiI/sQDtItuk+gd9/ORMN7NXcwYzh7/jK16jWJvl08UphsOCtKM4abdx7Sig27xVolSe/spd/RlRt3XO4DcsyB7EIRhdvB3//4h6AkQLl55wHt3Pcz5XonC5UrqW4KJskuSPyCiT2F0unqjbvUZ9R8wk1UksTGHMujid7E2maZ8EaT6EDsLvxznSYOaa9KdqfM30BLpvRxao9of5WVNXN6odnqOHA6/XXphmizydcVBWlA3X1Hf3dp+yPb2/bjcerYvBYV+CAH5Xo3qy47XvtrQmgf/338VFy3K0kv+oQJrGYbDO0gzDBaN6xKpYsXpN4j51L/zo2oYukiwr4ZtlPN6lTSlIY92X0VGESla3enVbMGCi3td7uOCEIPIlvqkwI0b3wPhzZBxlCvXePqlDJFUkFIYTaQPk1KKvt1D1o2vR/lfe+1Q194eATBpta+qF0HQ+soSW9wSIggjNNGdKZUKZKKw4p9hAF7bA8cO0XjZq0WuN64/UB80+YlIwnyd1bMwlZNznfvP6K67YYL0hoUHELDejYXJBPa0XMXr1LxIh86dAsRGQpWaE3bVo5zMMWQZPf9nNlo7MA2msQZjf94+Ffh9NapxZdUJP97lPf97Jq3EXhObQ5hw+w7aoEN6UVd2DVGREY49Ce6sH2TcnZn3Ob/4F3669JNIXNlMXsOSbLryXx2Z9w6WytjkpzdGbdizVWJgAIC9UXj/lS2REFq9FUFmrFoE72XMxv17VifFq/dQaf/vCQO5lrFLDkryS4crz3Zh9AGCC2cpfdvnOZg2iTJbq/2dal+zXK6yK602V373T5BelfMHECbth2ib77fL/aE839do3IlCzmsN/ZkF2YhMO2rV7MsQaO+eecRsV8/fPwfPX8RSIc2T3doQ43syk5jzzn+65+0fe9xGtStieZNsJYc+fcoBJjwRtNImLpgAyVMGEAdm9W0eQNO3Eqyi8UNmrOSxfIJUwNZMBl6DptNiRIG0PhB7azhv3Dd1qb3JKEZVk6OfmMWUIa0qVTtEdUWUGefDUICQqt0HoPmtkmXMcIhrHm91x7yIL3oC2x5oZGctnCj0CikTpmMsIHZa7axmcl2YQcGc48aFT+lNZv30oFN0yhpkkSiW+hvrxFzBfno36WRaE8WaPeu3bpHdaqVEX/ac/AX6jl8jtBc1KhYgkoVL0Bjpq8S2uaFk3tTimRJVAkZ+fhYifnB46dpyMQlVKF0Ubp24y4tndbPBtuhk5YKm0/7yBjoy69n/6IOTW1lLEkvvhdkF6QeJ30QWWgRlKQX/Zyz/DtB/qUZA074+K6IyEiqVelTsbAv/2a30ISnTZ2cKpUpRrUql7TRbujFFh/mLIyPlDO09tB6y7Jr/8909sIVG7OK/56+EAeerq2/cjhoSQ3SmX1LbAikGtm9fO023bjzgMoUL6jqdCLJrpZDCTTjT5+9pPRpHecQvmPayM7WvkjSC2eXLz7/mL7/4RhNX7RJbExNvq4g5KkMoeYOtjDV2b73hLjZgRZaFj1yfvTfc2HTfu7iFcqRPYuIaFE4X26b8etOX5zJ2Z1xe+nqbWrRY7yDjT5IlllzyOh8dmfcgkg4Wyv1YutqfTJDznLt1xq3IHgT564Xpj1YEwZ2bWTjw6D8HjjedRowjXJkz0xbdh8T2kTl2MKcQLG35zVLznJdB9mF4zW0l64O8Wr7ENpAaELMMXsfFDWyC2UB9lQcrpVl+YbdlOPtzA4OatiHsA7AnwRkF+YFuFm6eOmmVfuqnM+rv/1BrH/ATPoYYB+sWbmkuDHdf+wUzV/5vVDG2PcB7QDbBau2UcsGVVQP8CDOMEPZe/g3WjV7kOpeFk30Jc42y4Q3mkT7x8Wr1G3ITNq4cIQ1PNWqTT/QzCWbbTS7II24Rsd1yPSRnW1MArBhgfglT5aEhvduIQgaCAJMGU79sMh6/X/v4WNq1nWc+BJEgeje5mubr4K2c9CExS4XGVy/oH+Y9FgIoeVULn7yHc3qVrYJLSW1n1iIBk9YLAgdrtKGT14ubD+VBNkeapDer1oPo6Z1KgqbJWUBecHCtmnHIVozZwhlSp9aVVI4aWNxxPUVFhCQX1dk15m4JXGGjajUWuLbQHbP/31NHF70OjhhoZWaXZBdWZyRXldDEOSk44DpVLzIB1Sr8mdiDAAXxHOeMqyTUw29GrYnfjsvDiXn/roqDhFyrCgPN1LOStK7YdtBgkZSqS0/eeqiIEJY4GFiY68BhBam4Ic5rU6VaLdt78li4VdqdkGm4USDQ8Dofq1tQvaBVFeo35umDu/o1Hsa9nrfbj9ES9fvFDDCxEdp0y7nEMxCxg9qax3Tctxi/pWu3U1ou0AGJs1bT/ht5qiuqlp9vMPVuMX7cF06Yc5acVB1ZeKjlDtkCnMR2LPj8Pv4yXOavWyzONjhb86Kp3JWa8/ZuNVro2/GHPJ0Pusdt1prpRIXM9Yne5z1yllr3IJ012k7XDguN/6qIoF8QXGyadFIGwWB8v0gvc27jROHudWzB4mfsO5PnLNOkDOUcp8Woj4dG7g0B/BUzmbsQ7hZ+qJxP5oxqouVsP929m+x3io1uyDwi9Zsp7Wb91LTOpV0OXfDjEFqdqWTMHB2RnqV2KIeTARhIgIfG/iFuCK7zuYz5DFt4Sbxc5tGVcWhGbfFf125SeMHto0mthJ/mmXCG42y/mbrfpq97DuhGT174bKYELPHdFONFwhS1azbePpmwTCba2AsfCOmrhCk6/OSH4kJ2eDL8lbNsVzAEeEAxOPK9Tv0Xo6sDl8FrZuathMOa8u+2UX7j56iRrXLi00eC8jy6f0d2nBGelERV0L7j/0unIpQpA2zvSZB2agk74c2z3AaXQEkHFc7aqYJyrbUyC7I0KHjp4VpSfZsmYSDXKoUr7XFyuc3bj9I32w9QBsXDhcLlpLsQuPr7+dHbfpM1iS9zkgD3oXNvE7bYcIcwF7TqzYMgXf1pgOpU4taNrFnsbj2GDaHsmfN6HC4ke3YYwscx89eK7RAFUoVFVr0b3cepu0/HheOdkqHDciuy6AZQlv6Vub0wtYcGMDeG0WSXSzAuBIMCgmhjOlsDyQ4hLTuNVEQWWhyMD6+rlZabEoOWqSwcHFYAsaj+7WygcLZuMWVLQ5n+B+uHEsWzUcjp62kfRunOlz/OSMPeBHIHJwUf929UGjYpY2gqwgoesYtHHxwg3H4u5lObbflh8oxA02QUuuG8VurxSAa0bulCHWkVozIWdmeq3GLsTJ4whJBqEA0nMXdNmsOoV9q8xlk4MjPf9Cd+//Sh7mzU/lSRWwOfFrjVu9a6WwOqeGvd33Cs+7K2dW4xTgtXq2TCKX1Uf6oWwCYH5w5f9m6Btv3F5gi9u2ovq2oTImCwt4UN3ewm0Y89YzpUhEOt0vW7qBJQzs4tY03Imcz9iF8Y+eB06lahRIUGBhM6A/WIjVfGTgSN+48Wjjq4TbRWVEju9ZxcP0O1WgWNTelna0r2mBPdt3Zh2AWgYN3sUJ5hPa3WvniQplQt90I+mXX/GhkK/GjaSa80SxnENWDP52htKmirqJTJHe8YpddQGB9EDJ7DS1+x+kYV9p5cmWjiqWLClKmXMCHdG/qVtYzaA6XrNtBv539h9o1qU51qpcR1yqVGvR2ucFKTR0W2iRJEgmjehAYEJAyX3W3caKDNgOLvLPoCXA2QxIO2CgpC67oQJJg84rFrWHHUfTnweVOJaW2OaINaMdTp0wutBYPHz8VMQ7HD2znEEUBV4j4bkRCgIzEhhsWTjMWb6JfTl20mka8eBkoSC+c4dQ8aLXILrQQAQH+VPXzTwgmL1qkt//YhRQSEiY0nPZFaiaPbp2lSuKV2EoMV80aRIXz5bJpChsc7JlXzxpko9GEvS6u0kAIPy9Z2GprriS7ahuMsnG0sXPfCbpz7xF98tEHIu6tswIyU7lhXzqxfa7L6A3Xb90nRCzBYRIbNZJQQLsPrEC61eYO3inJA+Irg/Dj0CHnIjYz2N41ql1BdA8HpKZdxxGwVYuu4Wzcwt4ZGyycSPG+QhXbCOcZtetMiQPIZKkvu4obDqUZifx975HfaNHq7eIgrFaMyllJxKT5jfI9SnOowd2b0rBJS1VDEJo1h8TcU7mpQShF3LaAqOHmAFfYILhIOACbfVmcjVtP1kqz1if0zVM5K8ct1iaML2nihQPs7bsPadaYblFrVmgYlajR2alvCOY5tJ7bV46n5y9fUbUm/al5vSpWx2OJIcY//C2gLbaPXGCmnPE+T/chyH7n/hMUFhYu1idX2Re3//iTuL10NodckV1p7465+ez5S1XzBuV8sSe7bu1D//d9+GH9ZOHMDTOtIROW0E+//Slu96As4GIMASa8xvAz7Wlc4TfoOJK6tf7KSrrUGsfC6Yrs4toKJBsL5Yfvv+Og7QIx7TxwhtCS4Kp09bc/Wp3HsDCABG9eMsrGntI+XSK0C74WCzXsNFqEYoEDHMrc5Vto94GT1jiCIADPXwY69QTGVQ0SGVgsFmtUArQDpwqcbr+sUpJw5Y2rd2ivnZXeI+fRzdsPrMQUNrDVmg4Q5KdVg6rWg4AkMvZadGwUUxZsoN4d6tGLF4HCkU0WmJucPveP1WYMpDeBv59qNAkcSLAoVij12owB7UgHB5BdhMSCJhHmDbiydhWl47NaXVxqWkDy+ndqaNNf2W+JLUK2QVuLDaFnO/UFs167EcL50VlSCTnmnJFdmLDAgQ03CCB3nqTPhgYY17LYjNXSVUPjDjvrrXuOiQ0a75NOOLfuPhRk+cCm6TY2vGrjFocz2OnBCU9GGIGpR6teE2nXmgkixB2+9/CJsw5mGvbY4nAKO2t5c/Lrmb+oWbdxwr76r8s3KTw8XBwAXaVUBoHHFe0vuxaoZmDEujBu9hoa27+NKi5myNnZuFWz/ZfmDWvmDBZYyWLWHEJ79vMZcwXKAHvTFmj2Vm0EkRmuqkU3ulaatT7hm4zIGestxi0O1FAiSAUCDr1VGvWj4b2bi0M0CkzLcOuiNocwf588fSb2F8y3rbuP0rp5Q1XrwvQpJDTMIRyiWXI2Yx/Ss/mCoOP2KGniRCKJj1oBFjiQ28c6V5JdHEileQOSoshIDMr2oDyAjbK02XV3H0JbUIT8c/W2iPqA0GYdB0wTB5wJg9uL2wwQaPhT6HHw1oNPfKvDhNeLEodN4rRFGykgQQJBREGAQEz/ffKMQDZBFqKuz33FlfqDR/852K5u2n5I2BDCjgpmDErNLmwHoZWA0X2ud94i2BEP7t5ExO9VFpgsIFMbNmLpPAbt5pxlWwhB3+HIIwvaXL9lH80e283BsN5eA4LFsGaLQarXR84cCPAeZNCaObqrjSkGroN7tasr+ig1ZNj4/vzrqoPzGDSYuN6XxAMEDt7l9ppjvAsbBr5fLewY5FO79RDatWaiVbMnrw5XzOjvUepKNbIrsQWZeRUULBzipMOaUk7ABVE+5IHCfqhiAQbm0xZtchmeC8R58rCOVpOEA8dPiU1RmhZAY5o6RTLVK0G8E9fZiEkMoqi8OgQ2C1Z+L2zQYbvm6+srNKfOsqHBTv3k6YsiYkWSxIng8yRiQYO8QtMDO1po8FAgiwQJ/GzGHMxvoMXFgUQ64YD0hoWFUVh4hE3oNlfppqHpgpnGxkUjrBgMmbhUvNd+I3M1bmFCkfP/zmVSNpPnfyNSdqdMkUxcNQNjbHyw6cWYs88kCCdUXDO7ynzoLTkrx5crR1eMW5g+Ici+0tFWys3oHFLOZ5jGQAMO7CqVKeqwWuMwh3VQLcOiGWulO+tTdMtZkua9G6Za9wXMKewpCOkIRYgsWs6gGO/wi0DEHhRgDq2iTNyDvQMOlGrEziw5u7MPuZrP2CvnrthCT56+EPsqbh2xNj17/kqERoTz3tq5Q6xOckhaobwVUKMA9mRX1sG8wJr1+MkzsecoMcctAuaGNCn0ZB9Cv2Fat33vTyL0KEIvKslu485jxG1bt1ZfCZLOxT0EPCJHYQAAIABJREFUmPC6h5eh2jidYcBCswoCAS9MEF5cm4KgFi30vtggpf3o4RNnHK695RUXUjNCeyRP8rjixQY8aUgHK2FFne5DZtGXX3zmMkwLSG+jTqMFucR1iiRCMlYhNpqHj57Sosm9bQJqY7P+us1QG+ecCXPWCac1pYG9lgMByMePh3+zOsrhVF6z+UBB9pThwaRJgSvnMWla4cwuGIsdHKq+XTxKyNJeE4LfsGB1bfWVlXjBcWrxlD5OiaezQeGK7OIZ4AInu1N//CM2dPsMZiCYIH7Q4DgrGEOIZADzi6+rlXGICoLn2vebIkwwoNnB2OoxfDYl8Pe3OnHhGlgGSlcLcSSvgyuULkK929ezdqXn8LniAAJnSxmRAGO86+CZIie9Mrc9Ngr8HXbssKcDYQVhioiIEE6dnxbNZ70+xTfDIS5pksQubeYk6YWGcvvKcdZrTblZAU8QaXttJHBv3WuSIKTSWRKmAyOmLKcjW2ZZv09r3IIUdOw/VYwlGR0CmkiQYIQMVG6S42atoQv/3FD9HmyMTetWsmrp1GTtDTkr+6vlTQ8nwXkrvqcebevYOLGiDTPnENag2UujbkLUChQFf/59TWgi7TX6Zq2VetcnjPHoljOu35H4Z96EnmLfkAcCeTshMXLlDIo6kN/tu/9atZ648l+3ZZ/Yb0B6lVEbnIWaNFPO6JOzfUhrPsPMo0GHkfTu25lFRBwQXMwXHMqQaANOoDKerbSth1mafdQdiZ0zsit/xx6DmxzEBJ86rKNq4iej+9COfSdo35HfbMguwl2O6N2C0qROThgH7+fMqqrUMURS4vjDTHi9LGCZZMGeEMhuKJ2lEEsQTm/2tp5YyPuPXUQ929URpgAIHQTNqjLCgGwPtpG1Ww0V17Wu0u5i01USY/v84mNmrCK1qxy56cPsAAsOQq6B7KpdjztzIMBG1X/MArpz/xF98fknwvntwcMnqikWtUivvEY6d2CZ09zqcJwAqceCDWcNpRMOyFbDTqPoI8R7fS+7cIrKni2j8NqXBQQR2oOnz1+I/+Lfat74sIPDlbc0Y3A21KSXsT2pRrtYyEsUyUtdWtV2mb0HWodmXccKjY29SQXSeCL4PDyzcagBqe0wYJrQLEMbCy2FVogjkN5R01YKpyVgBy0pogrsWDXexowA34j3wUPZ3jRGGXVkZJ+WqlEQJNkFgUaYOmckUWKJQwE2Sqmxt48xi77MWPytCLKvtMfFoax936nCjrd6hRKCAHzy0YeqGe1cOb7goLlg9TZhOnPp2m2hFbMnH+irKzIEzR0ca2ByopVdKbrljL7CzhPkRyt0FEyWugyeKW4GlFesZs4h2O4ePH7KaqdqP4ewHiRMmEDErO41fI4YB0p7TjPWSnfWp+iWM/aH4VOWi0xpmOv7jv4mzLlw6LI/vMvrfDVnUODVqNMoWj9/mNDsouCmBk6sa+cMEbco+G5XoSbNlLOUq/0+pHc+y0M5/FFkZkj7sSLJbpeWX4rERGqKE3xT9WYDhD29feQgZXuQM0JwYq58t2S0g2+O0X0I75KRZGSYy7EDWlvXdhz2cfOhFaPdy/Qmxr+OCe8bEJEr0gstLRZ4OLvARhAndYRFceXgBO9cbJrIXKZWoEXEKdfZQgAbRmxc0qPcnuyiTZyYi1ZpJxx57CMd4DS7cfshkaGsbIlCInuW8qpH2SdnDgRYQPDb0V/+EAswwp+pRZVAW65ILxbp0rW70uyx3Z1qZKXmFW1du3nXwQkH37r2u7309+WbVChfLuHQd+3GPaGNhSMBHO3SpE4hzACAO8J8YePAVbay4O853s6i6aWPZ5w5+OGKbMTU5cI7HXFZoVFTFtjxyYMM2oAspROLsh6uMEHQEfoLBBHZimQYH09CHDXoOEqQM2hK7Atk8HHVDrRhwTAHZxJXpFcS/KxZ0gviAjtxVxozGe9XYi83RyTtUDqv4ValZYMvhPOisqAvm3cdEeQBZjNNvq7kVFauHF9wYMHVso/FR2h27W0B5TtdkSHY/MJE6PF/z6hfp4YO1/felDPIAw5FruKkym+CvwDCY/3+wyKbA4VZcwjEAR7qyjjd9uNNyh3ObEioEB1rpTvrkzfkjDBiPxz6RVzht6j/hdOwja6cQTFm563cKkyJQHARIQA3jTJsoJ5Qk2bJGTK134fcnc+uSC/aApnu3PJLcThztYfgVsj+ts0ZTYBJDfaIlvWjMo7KYsY+hLawLmD9UpJd/F3a0sP8TsavfwNUJta9kgnvGxKZJL24qlMSSCzw8OZXJm4A6UUqXGdX2yBi0EgirJhagbNWrnffEloQaLzsEyVAi/LoyVPhuCTJLkwualYqSW0bVxPkVZ5YXYUQ04JSjwOBVhvY+BGxYse+n8T3gOxg0VcWmc537jjEVs1i85t9VqZbdx+IhX5Yr+YuM9XhndCsQAsriQDs3nA17ix9tNa3KH9HLFq05yz7EWzyUqdKLpwvpBMUrh1rtxxC+fK8K0wCYNZQq0pJB/niPdAWQIuJ61lo6u1jVrob4qholfZOA6rjfdD84wCA8QTNk1KLLklvntzZHUwwYF88dOJSWjK1n7ALluQh3/vvOtgYYzOAhhch6+TmiLmEsTtxSAdBXnFAQRQGOCTaa771yseMcQtigI300IkzIsIEwt8pTT7QF2ySZ85fEvKMjIiMEXLWwujE7+epy6CZdGTLTJc3EGjH0zkEGWODHzugjcMh2F4DqBXr2uhaqYWHt+Ss1Q/5u5YzqCS1WFOQxVAZI9uTUJNG5Kzchzydz5L0jujTwiasGtY/3MTAphchN0ESQXphZgVnNldRHlxhjb0DfgeI9WtfzNiHsFZiLZWh5/CO2/f+FeHkOjarJUI9ctGPABNe/ViZXhOhVWD7B03gezmyWWNKws60ZovBDjF5nXUAUQ1u3Xno0tZTLiBoA/EI7e2XoNE5cPw09Rg2W8R2hGF8j6GzheNQ/g9y0rrv9lKVcp+IOK6uirsOBFqgggRcvHRdaDixWOE7kC6zTIlCIjYpvO3VHJzklTvsj3HlihiykuzCBm5Yz2bWMFDytAztp30CBWX/kH505NQVgvTimttdsovnEcUBiUSQQQ9e/DCJOPjTadq887AgkPaZtZTvx3hBqDXUkwU2segTYtHCXg2mJPZxbpVtQBsP5y84rRkJcQRzDYTKUTo42stSHp7gZWx/oMBCDnIAzRKu7JApTxZor0ZPX0l71k3WTH2NcXvz7kNhzlGvRjnq0Kym8HTGZlO53Mfiv6izbu4Ql9ESzB63+BZo147/ck6EJYQ9PhKaIIQSxi4chpw5psYkOeM7MMaQzhyygtOdcDZ8/oouXLoubAlx64CU4XqKJ3MIBzskR8DBH+Yn9WuVExEi5JqGcbxp0QirHbkkvUpHJdk3M9ZK++/UkrPa+oQ2zJAz2nHHGVRNRrgexzzBGoI10kioSdm+J3LGs2bMZ9g1y5CDMIlS3rxhHOFmCFEQ9BTMUYw7OJhD2QDzmeDgULF2bth2gGAmoRb7W7Zt9j4kyW7d6mWFLwRMnBBpCZGEoJ2H0kp+O9Z5VyER9Xx/XKvDhDcGSPTrNsOEPZbyylV40WZIo+qEZN9lGV1gTL/W1ixhyjpKLQiudtv1nSJOpTIsk6xrn3IRG83u/Sfp4uUbItB75bLFCCGgXAV/d8eBwBX06PPKDXuEjRq0D3C4Kv1JARFHVhn2ypWDEzaUrXuOEq64Yb8JzTm0fr3a16MO/adSt9ZfWyNYgPRiM8fJ35kpBforF3J8p1Kzi6vd+au+F8596GfL+lVs+imdGEBos2ZOJ6IZBAaHkJ+vRWiMQR4RvxUFCxUW7bzvv2PTF8gD2kpl6DqQRmQKO7lznlMzEjWcjYY4kvEl18werOq0oTSLgcYVTpHK7EiyT5DfpzU7k/3NASIXqMVMVvsWtVS5uEEB2cSB8ssqpYQTjqskJGaNW2iNQKpw3YyxABKBeQ37YOW4cuWYGpPkLM1dMF4RDB9mMUFBIcI2HaY00NxL7b2zcWsvM0/nEG6qIFfY3eN2Rx5yME8Qsm7R5D7WDR7aZFw1Q8OvxN2stVKvnF2tT2bI2R1nUK2tDm0ZDTWpfIenctYzn3Ej6WofQj+gvZ6+aKONfTPMuRDKzT7tuTNs0AZCg2H/wVr9MjBIjCnsJ3lyvi3M3RCrGAd4KK6IfITvh3KPMmsfgpM4QpdKsou9GOnd06VOKWLp44YQGTE3LBxOKzbsEUmqdqyaoMukTmtsxJXfmfDGAEmCfMC7+5v5w0SYH5xA67YdLk5wSicW1IO25euqpenlq0Cb0Cp/XLhCLXtOpK+qlqKynxaiQh/mFJPO/soPn4vNHaGqDn473SGskCs49AZ/1+NAoAW7tK+E5k+ma1Qj+vDm13JwsjdjAOmV4dh6tq0rbI5RYLaBBcSVDaA0Y0DoN6lBkk6DsLGtUamkcFwCQUD0AmXRcljEBth31AJhdlLqkwJ07uIVmji4vc0hBtf4yGAGByd895xl3wmtDMLZuVPcCXHkrF2EfUJUjk7Na4lkHvKKXs0GHGMXnv9q3va4ssZ3zRzVRRxupF2oMvKCzPaFq0PEQX77rYy6E63oDf5uxrgFVtAwwpMaTjFqMXj1OKbGJDlr4aJn3CrHkJE5hHbU1jR5NS9NYVzNZ7PWSi0563HANEPOepxB9a4N7oSa1GrTqJydta93H8K4bN5tvLi1a9OommgOZhqL126n/RunWZuHMmLmks1CkYB12968AQfYHXt/EhkplTHaZQMgom16TyJERSrwYQ7hcI0oGtIZUNYzug9BzvuO/i7i0suDKMyfoHiRPjNYYxGn9/a9h2Ifg1M7l9cIMOGNIaNBpiH+uPAH9PPv54VJASIDILSKLLAl7DNynghDBS9SXMsrC+xboaXFxBrUrbFVC4I6DWuXt9p2Sg/PpVP7CntBPcXd4O9am6Sed7qq446DE07Yc5Z/JxJsKOPdgvQCKxlSC+9z5SSIwwY0lVhgYE8L5zUQ8uGTl4vDhTT3wGJUtUl/mj6yi0PSDVekV4YGwqaNK29JwHesnmBjpwxtNBa2U+cuCbMOJOVwFYHDGY56Qxy5kgM2bHgqQ/sHBzalGcP4Qe2s0Stgh1a//QjVeLPYmIZNWiZMG97P+bYg/LAxtncEkalQ0R8lGXbVP3eDv0f3uEVf9TqmxiQ5u8JF77jFt5sxh9Q0gGgb9sTQuimzWTqbz9G5VqIv7qxPZsjZLNKrN9Sk1vpthpzV3uHuPiQTXGB9TpI4QGiFlWnS5TsQixzmDjneziwcxu0Pqq5ILxzXAgIS0Mg+LcQtIfq4aftBByWEWfsQ+gylQLNu42n/xqk2mSnhwC7ijDPZVR2iTHi1Zq4XfwcBQ7amTOnTiKDS9pEOYK/TptckypIpHU0c0s6lraZSC4K4v617TxIpWHG9isDWaGv9/KEu25Cf7mnwd2cOBGZB6o6DkzvvdLZJYlMB6bIP+D1i6grKljm9iK8sC7JnjRvYVjVShCS9yitYPNd31HwqmDeXTVxTeOgiJjA0qGYXd0Ic6Xm3UrOLMYorZyQEgMkGguPjWhDxUp0VEN7L1+6IQ5gM3q6si9iUOFwsnNTLxubXVd88Cf4e3ePWE8dUPfg7q2OWnCUu9jdP7oxbs+aQO3hoRboxc61U9is61ieZdU3t+105g9rXd9WOO6EmnckhOuTs6T4Eu+Djv/5J9/99QqU+yS+S1ygL/EQQdhMpfGUcYrXvkqR3xcyBNgoIOPAi5KNcs3DY+ahSWzr1wyKPsk7Kd7satzDvgSmk0hQM2UlhxsBk1/nqwITXnZXzDdZ1h+yim7ABzpA2lQjDgoKTH67yQD6yvZVB2AGpZfdS+0R3gr/bPy8dCJw5UkHD+veVm6JferSURhyc3BGf1iapbEteS+LKK+c7WYQTycS560T2I2dpdvEduJaHQ5cs9lng5AIPpwj7RVrPt+jFVm+II1fvxKbyVeuhwhkSDnEoCF0GcxRsKGWKFxT2rM7C1Wl9jydk153g7/YxTLXGLUgkkm7Azt4+25jatxh1THWFD+SMKB6Ig+0qRJEZcgbpffT4mdXeHP0yY9x6Moe0xozyd1fz2cy1MjrXJ9jETp633iZDoD0GSmdQZ/gg3i403LipclbcCTXpjhyMyNnIPuSsj3rJrnzePksl/g4Nb/Eiea2KCmiRo5xuJ7kDjWpdV+MWGTCv3bxH7ZrUoD8uXhFaZUl24dy2c98JkRyjWvniqmnLDXcuFjbAhDcGCw0OSbg21yK7iF+IVLrKtKX2J3hoxt55O5NDDm5cYR3++YyIefpJ4Q9UUy7qDf7uKjqAPcy49l+3Zb84WeMaCfZPfTrUE6YaCGg/ad56GtO/jQ0pN8PBSYu0wUzg6MmzhMxbcExYOKm3KqGBDSxIWMdmNUWT2Ogmzl0vYrBu2X1UhL7RE8sROMD5AIQfJis9h80WURzghACZQVPqLL2ns2/xBFszpoH9mIPjGVJGK7Pl4T3Y9BD7Fgcc2CrLLEjKPsixj7+5Irv4VjhqlCtZ2OET9AZ/d+WkqIYLtPyIjY2YuSD61SqUEBnolOZH9s8ZdUxV6we+HWMNUSmAJUhM344NnKaINkPGsg0zxq1Zc8jZd0E2euazWWtldK5PILvdh84Wdu6I9uFpAdkFMVo9a5Bmel0975BJeGSmQbVnzJKzWfuQXFu0yC4OklASqaXwhdNiaFiYCCkqbXgR5x7x7uFXYmQe6h23wBo3wkMnLRUmNJLsYj3A3tq8biV6+vwVnfjtT+FvwvF6iZjw6pnVb6COnESThnYQcUmdmTHIa2QYsjtLPCFPoeVLFbFGJcCkmrJgA2ERQeguaHthEN+ucXWqV7OczRfrCf7uLkSwmVq8ZjuNHdBW2KHKdI1YKEZOWyEc82Sed2Xbehyc3OmLjOuLkGywHQU5K1/qI0HEnDnLoX1sbnBwg601SK/F10Kbdx6hZet30biBbVzG9FX2D0S5/5iFIm0zQi1hEUaIMjgxoi/LZwzQrYmX7XqKrSvc4Jh37Ndz4iqvctmPrX1SpiW2f/7DMs0JgdFhSoMiCNmo+XTt1j2qWLoo/ffshUirjBBBRQq8Z/M47OlSpUwmNmVnZgwgXbBlxvci7Jl9Egw9wd/dGSuoC00tzCRgP//lF6VEaLmB4xYJhz1Xobn0Oqa60x9kAZy/cqs1tTdsBBGfE6Y0iGbiScH3/XLqoogQ4urAZsa4NWsOKb/T0/msbAMaO0/XSrPXJ/QrJpPd7kNnUaYMaR38SZR4miVnM/YhrAmNOo+mri1rC6WGMzMGZQhLZIy0N7GCecOZPy/R6P6tRRQQpDOePH+DiLHdqHYFzfCd9nPTyLhFxjcQbTio4XYRPgJblo22Os25E/HJkzUjNj3DhDcGSwu2nghsjdiqyDxlr0EF2YVXbaG8OUX8VtjWOSvYpEEg4bEKsovQZMKWtH09alKnomgb0Rta9ZxA3dvUcYhH6yr4u7sQIntYiRqdHFIhw9i/z6h5wutfjeziPXodnLT6hBN6h/7TRF56hGgr92lhcRXvSlNh3ybIHlLofv/DMXr+IlBEe2j6dUW3g5hLDSZi2losFpFxDm3179zQJnuV1jfhdyPYOmsfSTGQnhfxjENCwkRc5HXzhtKrV0HUvPt4EY1C6fiHdrABwLbt+LY5YkNAbOl67UeIpBeoL1MxS+cLXP8pzTukPSKu4WEfp4zTi/Yl2T168g8xJpCq2J40o56r4O968LSv077fFMqWJaPNhiZtW7WuMPU4purtE+ZwwQqtBZbKhBq4Aj15+qJLAqL2Dmi9cNuCNQUHB2iOINNhvZo5NUMxY9yaNYfMmM8SFyNrpVnrk+wLwq/BVGjq8I5WUyH8dvn6HcKV9pIpfXVdV+MwP3r6KptUwmgHf8dhH+ng3SmQG8iuj49FjEFl2m61dsySsxn7kJyv6OeaOYMdTOkk2U2ZPAmd+P0CHdo83eb2FM/hNg4RcnDobFCrHN26+6/AUu3g7QpXM8ct3oObJNySKg//IMFYBycOae+OiONkXSa8MVysIKVjpq+iBZN626SPlGR3yZQ+1H/sQpGhy1W2GGjWGnz5uSAOk+d/I7Q4U0d0EkGrYQA/b3xPobUDMcmQLrXD9ayz4O+ewIfNFGTzxPa51vfAjAEnb2eaXfv3aDk46ekXnARxFaw0BdHzXHTUgYYbpilBISFUslh+p6lCtd5tBrbKd8jA6Uh2IYOYIyoDbMegHXEmLxCor9sMpe0rxwstaNNu4wjZ0rA5jJm5mj7I9bYIrYaCwP1qaWwl6YUWXYYVsie74we1FYe3g9/OcGpSoBb8XQtHZ79XatBHVYMKmzn7MERqbWg5purtFzbtz+v0dHCMgfkTCggIwrfptZnGjQIcBmGCgoMHbJTb9ZtCNSqWEIlqnBWzxq3e73ZVz6z5bHStRB/NWJ/QDiJgoC0oPGQB2W3ebRx1aFbLxsHVFTbQWpcomlc4kcoCgjZ4wlKRSKfABzl0iwBkr8ug6Q5kF4dQHLjVQnfpblyjoln7EOZP296TaWC3xjYZ2STZzZwxDX1WLL9Ide/qMIAIGzCbSZYkkTiQeGI2YNa4BXRYnyYNaS9uHlEgqxbdx1P1CsXFzS3mtSvTK7PkFFPbYcIbUyWj6BdILzYvqeWSZBdhxXwsPuLKF5mGZAHZwEandEoDeUDAbGgQi33RnvZ+M8WaMABRBtKmSk6dWkQ5uLkqyuDv7tjsKtvEoli+Xi+RGa7q558Im117sou+urNha/U7vvxuJra4/itfr6dI1AE5ySJtY11p4lEXjl9pUiUXKWXHzVpD3y4ZJTKnYSxCE4Fwamr2cUpZoS60KIi/i4VaqdmFuce2H4/To8dPreRZ+V5lO8rg70pNsrvjAra76MOgbk1sHkXSBZATaOSQTa3x1xV0RUBx9/3K+ogEguQpMEmSBYeHJWt3CrtnlMHdm1jNmJy9C1qmj6t2cEh3DLn9dvZvq+Orkb7GpmfNWiv1fDNutcp/VtipcyvIEEIhQhMJkyc1sovYsjmzZ3EZyQWHPoyJ6SM6C1JmT3ZBjA79dFqXKRYOvHsP/0YrZg6wppPGnIAPA/rrLD26HjxQB9rg/UdPucziqGcfQpi67FkzOnX4BenFGJex7pVkF2ZW3YbMovo1y9lo1mF6oMe52v5bYaKYKkVSQ1Eb9OAHG+1LV28Jko7oI2NmRK1Xy6b3F4/3G71AZCrFbV18LEx4Y5nUlWQX4Ztg65glU1qqX/Nz+vXsX8KGB4sbTBzgcGUfiQEOQ0gfvHP1BOuX4xoUi6YyZa0nsLiT5hALFpIWhIWF0537/1o1hZ5s2Gp9BSlb+91egsMETt7QboOgg0hDi+1p7nRPcDGrL1hsDx4/TYFBwVShdBHrQo4N2s/Pz5qIwSxsoQ3I/3lLG5MCdzXxwAtj6+qNOzYkEXZm2Dik058eXO3JLojrly0H09gBbSh71kx08PgpkVkPXtKI4YtYvnoLvK9hcgBS0bxuZacOPSCHMOPAdT/y2EMzJrMxQWONf6/YsJvSpErhMtW3s35BlrDJO/7rOSrwYU5qVqey0ytrzGVkDPy6WhmhwUG6auCBrH0wb8I4gZ35kO5NXTo6yUQ00vxE9g0kiCKJ/rpygyLCIyhP7uyaqZ7VvgvmLcAI74HDFRw73S341m++P0D/Pv6PypYoRLUql9StvXb3XbJ+dK6VeId0IFs/b5hLUyqsz/NWbCVkLDz95yUbzS4iZIyduUYcSJFF01kqWchywcrvaef+E6IO5ojU7OI3ECFce6+fN4RyZM/iErKew+dQiSJ5xfhHkWQXhFmG9fJUk6g0lZg1pqvHh0Zp9zx7bDeRVl6r2JNdKA4qN+xLx7+fLRJB4YCARDuILzxrdFdVJ1ln75DpgHu3r++SxGv1Uf6OQ7X0i7B/BrKE0xr6igIZYY1NmDDAKmPIv2r5T8Rvniqt9PY1ptVjwhvTJOKiPzixwb5MJozA9U7xap2oQqmPhCamYN6c9FG+3CIE2eclP6KhPZs5ZKPChlq5UV+aMbKLiHcKzRdSJyI+rzO7WT0QeZrmEPGBkZEK7wah82TDtu8fFm6kEYYdLGxzYbaBkz60XfB0RlQAVw5+9u0hUcfhE2dENIWPC+exiTrgymkL7ZjVF7TTc/hcsVkhKQXs7pZN7yfyp+ObQOqR6U1ZzMAWdp3/XL1No/u1EpE8lJp4bGoXLl3XJEPYJHClCrtfkFR4PtfvMJKWTO1rc52oNc5wkINTIDS7aAftYrzAOxpRH5DiFtepsPOD46Crq3grqQsNoy6DZ4i2urSsLbTPC1Zvo0WTejvd+HFo2rr7qIiZDNKOa8QRvVtYNzMQvNK1u9OuNRPc0gZhfLXqOVEkNWnbuJpw6IPc184d6tRxEXMGNuQgvRNmrxWOgEoNGw4bOABpRfqAfD54L7s1OQ3wgbYOWi6ZSjWBvz/NGdfdrW+SMYfh0Q7N95bdx4T9szKDpJbc5YECWimQ3XVb9lH2tzJ6dKDAu6DZA67Y7EsXL2hjO67sS3StlUqyqzdaguxL64bVrPMcZBc+BMjqdf/BExozc5UYw66wRfi6+h1GOZBdmKbUqFSC1m7eS4Xy5XYZsgyaUzhqThvRWZgpIaKOkuzCBAOaxXVzh6hmGnQmb3ftgp2144mTH8wCQdyh2cW4wKETWMBZ/Pbdh1SrSkmhPIFGXmnepTV2JdlFCuIOTaMi+hgpOCRt//G4yFjpiqzCxh8FCTTkgQYyXjCxZ1RiqvGLKXeOrMKHJz4VJryxTNogqNKxClfGo6atFBs90glD+wSNTvGPPlQlu/JTkfKx88DpQisGpy1EJNDjeOAMKiNpDqEVhuc/Ciahpxu27Ju0bYSBvryGx8GgUcfRYvIjzBvsFBMGJNAleWz6nQfOoBevAq2dK4BzAAAgAElEQVQbtgyfhkDff/59VWTEUytm9UUSuwmD2lnTIENuE2avE+QINrJq32QGtiC10JoiAgU2MmnG4C4ZkmmIQdjRd8SHdncDsI8xevLURdE3xJksWuh9+v3sPyIkkF6yC5nB8QRXvd8uHmUllbhFgXmCnhsPbIC4SUBdaS8LzMp81c16Da1roBERkozg5gEZm2RbMKFImSKZLk040oUvmNjLmuIZ7523cquwq4QDpKsCT/ruw2YLGz8QUkTHwGEChwYkPkGcYmB19eY93YdFEBikSP/kow+pd/u64joXa1atFoNo9ezBQmOpVaAVxoFiSI8m1gMMNvC6bYfRgC6N3U7IAk0+5jMiUKRPk1LYodtjpuyT2Wsl2l7+zW5auWmPQ2gwZJDDDYGz2N24Fs+QLpXoniS7yjTo0onwl13zXcIq27EnQvBlwOGmfN2e4tAk7UDVGoMpAA6gOHinS5PCqtnFGtG2zxRxiIATKSKX6LlNg/kUDp5Yy2aM6mp1gsPegqQR0slVa7zIbIyLJ/exudWAsghrv7N45vZxtxH55fGTZyKNL9asJet2isOFO2QXODfoOJLsyS4IJ0y7nMnZ2Td6ElJOTcZoHwoyHFq0HG218I5tvzPhjW0Sc9JfTC57sgsCjGs5aKFwBaJ0YMGk+/Ova5QsaSIxofU6t6i93qw0h0Y2bNkvLFQ//XqO5k/oZe0qFvFOA6eTxcfHLbILTR1sTeFEhutxOAJBowabOthNbt/7k8usNmb1BQcBfz8/G40WvqlGs4GCNOgh8FrY4ltdOe/huh+bAjTxuOLzhAxBwwDyjj6bneMd5FdJdrFRwrEOhAnjWy3WLwYI7GCh5VDG8cUmMWvJtzZ2wc6WCUSRWLlxj4i7LAsOQkj/Dbt6vbaRGFela3ejA5um21xvY25du3lf11UoIrrgVgMabxRoutr2mUwyrBLwh8kQzJ3UCjA7e+GK0Not+2aXSLP9zfxhVicXPFu71VDSIlSybVybDxy3kPasm2xjljF3+RZhrqGHxOw5+ItIXb1hwXCb2yqQLfQTiV70Fml7rjwMg2Qi2sGO1eOdasz0rpWuspfJPspDMDR0iD8ui7Spha0uwiG6KtKMYdvKcTbmITh8TZ6/nvZvnKYJiSRCD/59IjIXKuc+xhHCstnfGNk3ChIJB7/5E3qKPUaS3bEDWgslzA+HfhFOcQc2TdN05sL3T12wkbYsG2M9eCpNJTYtGqkrGgUOR4hhLucA+iztnnt3qK9pz64GnD3ZhfYU6xgKtKQgr2oFN2y4gVNml8RYgpMtTNKa1amkKSflmoIsavY3Ak+ePhexgJ2V5Rt2074jvwvNrpQx+t9hwDT669INypwhrVgzpMmf7g7F0opMeGOp4JTdtie7EZERtHDVNpqzfIsgF9DagKwhpq9aylZnEGABhzNOsiSJXWpjzEpzqLVhQ8NU8uP8Lj2KsXCu/jZK44YCYogrf2daUFfix6aKzXbL0tE2p3Fcf+EKXSuFo1l96TpkpjBZqFOtjMffpIUtrrRrVy0lroy1CjYAo2TI2Tv0Zg1TPm9PdnHI6zNyntjo4OiJjRh2bO2a1nAgNdCq1q1RRtX8AVpsJET5MHd2pxs2xlf99iPE1ThktGjNNvrt7D+0YcEweitzeqvdHMivK40mzGaKVG5rE7dYfqNe0xHMVZgnwRMfcxJkUZI7GecaGq5pIzuLUHGuCsY4bB+V1+OYD9D069F8o+39R3+ntVv2ifCDygJNPbRbehxTcX0+dsZq2rp8jMOhHFrBM+cviRsiLbtTvB+mLrjSnzWmm01/cBge1rO5WyEJ7bGT1/E1K5UUWkFnBTd0VZv0p8PfzbQSO3sHMhws4fWvpgGUml3YkENzKEPSwba+brvhwvEYjlauiiS7CC+Iw6AyAgTIEdYbvdkdIQNo/5VkVxkmD9F4YMoi7X2d9QtkHQ6o88b3EFXU7IIxF2HO5azgmZrNB9Gofq2se4Sak5879sX2ZFf60CQM8BdkUTiG9W9NFUsXsekW+lLsiw7CrEMeyiTZzZg+NSG6jF77WWitQZK/XTzSxnZXhpqzP1DazzXs40qy22vkXHrxIpDmjOtBL18FCk0vbjyUkXC09oDY+jsT3tgquf/3W02z23vkPIJmaMqwjtb4qCLm7oi54rpIT1B6WV/YAIWGCbMHxDoVcSYnLxMJKpRXVa7SHMJJ7McjvwlbT2hGcV2qVlxt2DLo+NZlo11mCJLXnXnff5dqf/EZLVy93YbsupNyEfaPp5FBTRG/0J185Vp9gS0rbAmhJcCm4EzLLm3mpDx7DJtj801YXEEeXJlpuMIW15ODJiym7SvH6QrRpkWGsMlkzZTOrSs7T7OG2ZNdefiClqd9kxqiD5gjsDMMDg6h6SO72ITlgRYUdsq4EZCOINiYRkxZLq5rP3wvuyBJs8d2d3rQgsnA7GWb6ez5KyLjYZtG1UXSDDgCgWiCAG3cdoAKfJDTZVzbmUu+FVpp2AMn+7+Zj7umI5hruNrGWMB7oXmTZBemBbjGB2mCg50rW08kP9kJZ6lxPcjX15d2HfhZaPNwyPsof27RJsgAIng403A9f/FKaNCBOZ6RxR3HVKw3LbpPoLKfFhSROiRJgGnC+FlrRRbEZ89fCn+EUX1bOfgsKNcZOMniqt1+Y5cEXMse39lW4a7tKZzMME5hHgQc4cApHcikrKD9s08AhBBYOLhCBn5+vtSw4yhqWLu8cPzFdXuTrysKbaLWbR0SEWCcQTOLg272bJmoTrXS4hALmSLmb6UyxXTvjCC7ODi2qF/FxiYU2seK9fs4xBBWa1iulZgjIPK4PbO3C8Y7kFABWlNnBSQQcoaDWKYMqanr4JkOTn4XL93UtGlH+/Zkd8P3BwgRjeD/UblsMYHzHxevirUCZlXN61W26RbMiWCHP6JPS3EoA2lVkl09cwgNwmYd7Sj3IU9CymEfV5Jd6dCOvX78rDX03dLRumUeWysy4Y2tkvt/vzdsO0jn/7pmtdmFA8uoaatox6rxDhoLLExYAGC34+r6GnZrWEzh5AVnmMiICOo/dhEV/DAH/fTbeafaUrU0h4gq0GfUfHFtkigggTjFu7KZU9uw8anQFBQr+L5YVFFASpxdU2MDA8HGBo1rU3nl727KRVzdl6/bSzhwYIFbun4X4VpJanahlYOG6d1smZ1qh9T6Aq0ItCj4Vmg+YE8FguMq3iNI74bvDwpvYeU3bdx+kGYu/lZc3UcdSlqopkIGZmrYYqOp2Xwg4boPjotYFOEJ7irLlisyVODDHFS75RDq2vorXSGO5PTzNGsYZFzy43xCQwvSD1MLED047ygLtDqdBk6jT4vmE8RAWaC1GTVtBXVp9ZXY+LsNnUVBQSFC84UQTrj2hmc6ropxANQqanZzGAe1Wg4WdqfILKhWQO5wQINj3ooZ/YXDjCemI8q2JYEqU7wg9elYX2zScI7D1e/x7+dQiuTqml6M0SETlwhnTcTlhsMOxieS4Mg2Hz56KhJc4HrWWeIBQewGTqci+d+jQd2biPHlrmMqDhQgGgi3tGr2IBH6DVp12JkiaQz62rbvZKpcpphLTSLIScf+U8W1OcLlyYJ1C+QG3wozA2jsQKD1FIy5bkNm6k7AINvEfEYyl7PnL4u0r7DdlbhCkYBDGg5gCN2nDIMFMzUZ6xV1QIZAuIEDUsPrKSDOiBmNPQBrHPqBCCfQGrdtXN2tmLxSswsbcSSoWTqtn2gbJjog1nBWBLHWo83EHEG2z6GTlqnaBWPsAS9kaYQm29lBC1khcZWPGwmED5SmGTjoTV/0rWgbWuhWData/UfsccP+gsPFiD4thBYcmtzqTQeIyEf2pjgg9jAvg/OgMo061hz0YeueY+KmFEmfpGZXOYdgM//F5584nUNyH0IYTyiM9h35zSZ+sozM0KJelf+1d97xO5bv/z8o0VAaKm3tQdpDISUUITPZm+wRsldm9paZ7EgifBTSpPUpzU+DdhoqbZHf43n0O+/v9b7c131d9/t94z2O86/yvu7zOs/XtV7ncb6O15Fwl4J7/IUtWzWy68gu9y9EnH69Hs1R7qOseIwR3qx41XxjJjrmVvVYJuHaQHnDeA2idf2Vl0qdqmUCZ45ulQ8kiUWusZ1EMoOXbMXrwFvm0L0kJg3pGKvchm0a9kJUz4rayNIeOWWR+rhC2lg50w9awiDizstz1qI10qBmOY12pbfkIhE2Ir2UYEbvDNnlhY7UgcQmIoDouVo1qByTHPjn5R+Li7A42zjnd0tJ2EQWOmiuKSWLNIU5gcOSJzdqtjRSFcYDVt4EqjCM+QhQ8IJt7lVPvyzoKyFEibBNRIa4/lSKAye2OqO0jFQN8977JMO16DpKXlo5Me4Hlo9OvbaD5bnl4/aLhjMGIplb3/9EF3t+LS2RSpITwzSjQUkiLI5I1kLbWK1iqYTWXM4VIaPSkXhkl+tBBJ4PNMl9JLgSJQ1q3Nv0AyGDaHn7rFz+Znls5UbZ/Pp7smhqv0AnCQjZJ59+pcl0GUlMdbigS/ZnmLPQJ1pPYmeixntg+KQFUqvSrdK6URWtNokzBlhAOt778DMlOlEdNtgdoGAHZMeRfrcdf+7ZRE7/lSHFa2i/0TJ7ya5bmOzbJzJwzCPqEMB7IrO2oRPma/QeAukqZbJwRtsOCccyMEw+452bI29Nat+5ny6Yc5BrQA5FxduLC8cENRap3OdO3uFN8mOHkSABizEIelDzvlsg8+zI+eUw7rd8I15+/Z24Cczcc8++/OZ+ZJdrzbtg4fJntLLhkof7By4M+A7NWbxW2NmgqqffUo5ACN9rCgEFPc98h/b+sy8N2XVyP0hw0AIis9576RmXEd70oJaJf0Ny0tiBbTUxhRXm6IeXqK+oixKwbUXCUFAEgyhTsdua6PaGS55Irw6WiOpXO35Ik9WNpKBKo16RE194SO9q0EOTpXgpIG0447SCapFFJCZqy0jJRbZmsWca0LWxYsfLEzJCWU+iMbghUPXKq9cKGher9eJ3td5vaw4SzIcvTOvm+iXiBglbNLVvLKrA9b79ns6aQIWfbFhDK4jXJJnUazZsVqcPipYcm//oSK4AfjJEpv/t93RRdwLuHa7Vmo1bpGntCgkjo2FVw5yLR9h8nAe1+4gRffrfx5+n2Rpmu5MExKCIExEZ7jPvveWwfnXNNP1YJNIAQpyRvTSufUca3RwR4j/+2i23l7haLY+wNCM6mqiFSUf4baKxgCuLD4iBWxA7CRRJemzvQ7qiJvMEEWgWEXWrlYm0DR6WPBl2jfk7fUwf2TVNPgJEmog4Wu0wjSbRR4jTGYVOllJV26nEAbmEa5AAJEZh5vxOp+nN3I+nPQ2bUxCuLODA9p2Ns8O6yDR/Z7HMDiG2cZdeeHaovCLRwIN0wZDPtz8Idsfx9xnP0YJv2s2V2+r7M4ovNO9n3v1IpWg8w0TEXYU63nWQbMr6xmtO6xx0rbEbbVa3YsJdMb6F97YeJL071tfzehfX2EY+v+Utlbb4n41440nvNz3T3GjpHIgR3nQCl1l/xhYvdjDuwcMCZ/GTG2K2MVHGTZSYrT220yDA/qQvHrRcuSR0mwqt72UXFU5T1xsSTN1xdGJRtJ5sdWPNRPIRUVR8cHX7aGgnTQKCjEDcwnTJYSUXWe3zAgtrvHSuLNsstp3qjkfDzBirVfg3Qz6oQULuqt8jTZSR6Dlzmj+pl+rToowFYob+15tw4ipmkRDDlm0i2QfjY+ucMtN88ImEQwIrN+qpix1IJmRp58+/RM4mJtpFxL1ahVIyde4K3SJGAkBSRVj0IF7VMMZIEs2y1ZtURlOz0q0quwhq7Cg0aDdYNiwdo3MhQahhhyFSt1rZ0Ixz16dGhVoOUNkPhJCP9wODp6neFZyS9RiNp5tz8gZItaueyPmdltSNJUxHm+xYHNlF8tGhWXU9jXNe8GfS+8fiHEu80gh+7xawV19+gZQpcY1UKEMBjGDLv7DkSfDGeivIPopzkmTDLgvb2kTOudeWrnpWnpg9WKVBUatJIY2o1rSPFhfwSlV4/9WtdnskSQ7vOLLkkdCwo0G1Ma/2NMwZwxEg3mPuuXXXn1wMdOdBUcWwd1VW/rsju7zjvVVEud4V6nXTRVzQLqZ33s7Rwslf3N+c9j+RrMfbD7aK2KPx3aK5Eu7JlGV21/qKy87XBbVbhPKO4D7k/RK2yHLEOWgniaqrf/z1V+hOBzuUEPQoDj9Z+T7yj90Ib3a6miJqNday20glLS6qi4wBY/KFU/pEWnFDIEnywbaEbV4+/DwYNPRePPx8AEms6Ni8RmD0Dp3agFFztDLNccceIxNm/ut5iiUPOqooWk8I4oeffBnTPfL7F195W/p1bqg6LTSPnVrUCNUfJSq5+N33P2pk0r+NHe/WcB/Jzasmx7bs2bKt2qS39OvcSH1BExFNIkCNOpKEc6XUr15WS2hiGE/SA4lESDaijMX5KFIxj5K7RKEhAlTbIrmBpEW0cN6PhX8+kJpff/8zZrzPS5AFToXbbpQBo+fIL7/8rjruKHpGnBHAAO9jovosTrAl4uXukqO8W4T+sfirhp152slaQIVEEXSv+fIdIWOmLVGnBW+ZY38/LM7Y7nYV3JAx8DFBR4iLQpSGLnr4xIVS9OLCuuVNXy3rV5a33vtYPUaRtpS8vpguEhJ5jAYliRBFr1i/uyaQcg4aH/jO/SelSRxMJB1xhCDqWOKRXc5LlL5Jp2GyZv6ImCYekvD8lrdjGfMOM5IbKQXtjxZTtQkSzbUK25pNlDzpkp/48FMpLigJE716q26jJH/+o/QdxXtuaM8Wcu7ZpyVVTco5Y5CsyXXk3qcsMwuNx2cO1MUbThM3X1c0MAGTdyUFP9DFspVMhNNVG3MEh6p74wa13c8+ikgzVpIsIpDKrNv0mozo3VKT0HhfsaglSQtyn5OaN7KLppfdKpKkt3/+tQyZMF/fr3PGdA9NinWR3VYNqsj6F16X8YPa62KMgALvCYpJRPUCZxevRrO+qul1WmlkDCzyn102NrQYi7sX8DZGYzx/Yi8dP8/4xNmP67V+cs6QwLwU7/X3umzwfvfK+tC6c/+EFZrh3f/Pvn2R/eizy/1nhDe7XEnPPNCbsu2DQB59Gdu4yaxEXVfeVSBZwVQvo5ENTcRu0Ji5ct45p+2XIOSFlAeZrGQIMvpUXhiQmfRoPfkgEQltUa+SzJi/SokYkSo+NGGRlKCSi0SE2G7mg+dPdIp3azCGsvd0kcHdm+nHH0JO8Q/IDVHnDz7+LJRo8qHrNWy6lvdkm6x+jbJSu0oZJdDJjIUtbyJDfDCnz1+lemIWF2gt2QpFkxjmpenm6DLqIadkSLdvWl3uur24jokX+/nnnJ7Q5J/rvHD5ek1WQ+fNhx+tJVG333//UyPJ9IUDQVDzVg0jEbNJ5+FpbLogXOgavWWx/X0hGWnYfoh6J9eqXFqz0ImaD+7RLHRHwtvXvwutL+Si887SRBDvR5gqhus2/esxGi851PXDR2X6gqeEZBJvkghJTpAgJ5sI2rp1/filI+kZC/NZs35LmkxyVybaW50r3vZvvOsVRKA1W7/WHZrc5houF17bsHjJk25OrRpUkm++3SlPP/damgWBfww8z2gqsYdCG5zealKueh9SIv6be9BtCbvoIBFWnrFEmnQWSeyY+MkuzwJJf5SbJmnQW/2PZDwKp7gkSmzTeI5pRP7xs40iTcpunzAW61/v2Kn3EM9z9wen6UKKbwjvJxLkXOJe0NxdMmG31vfqux2tMd9FAhIkUiNNaNPo36h81IaMgoUWgQl2QJt0HqHyqDAbOPqnSuapBY/Xe4BdAJLHeD+tWPuifLXj+0gyBPrx3uc/7/pVF/LO9YjvCcEuSHCU3cqo885OxxnhzU5X0zMX9F8QMeQD6SG7dOVdBfIxQI7gjQQRlWvaebg8t3x8QhRZxf7511+xlWh6tZ4uKYJM2B7t68b0U271zIPPFn8izae35CKDZmur++CpsmruMCUlkKrPv/4ujQzDPzkyhalKxUuFlyfb7IO6N9XzJkM0eYETkXURs2THQsQUhwE+EOjlbitxtZI6ouB8fIno8/9hVYaYHx+DPiNmqgsG0RRni+U++nxo0IKHJW05rNhau7LoBVowY8j4R/VDRQY4H6owjSV9EKlgZ8G7CHGShbD7jcgdURMwIBqcLNn1X+8gQoqxfNU7SkYqCkGf8XRzLqoZ1QoqVWNxZJckF1dS3GWxh+kaibARzfdKI5if2/0gYuqvCJbIGSbenNBjUxKcsYS1jFaTQkbxr0PD6brzwnvAEX+cO557+U35/sddatFG6ep4jXflb3/8qVHceDpNonq17xuYxn83Xj/IkrhPvC4SYfPPCX9nIUKltETuQmE44NLx+ZffStFLCmvQJT0N+dngsXM1KQ8tbRSyy3l4Zhg/73re22s2bNFkTxIb8W4Ockvxj5FdlCfXvaSFJF569V3dHeR9zY4f7/0RvVtFfh+lZ/5Z/TdGeLP6FUwwfh4stty8tjbpnS7b5WzHeB9wNECQaiQKybT0aj2JUlHwgS13tvFp7uNy/VWXaqR3weNPR07CIVqLrIJVN8RzwqzH1XMVe6+whDi2uN55f5ucc+apUuiUE3Us6SGaDreMjMWLPSQavTJZ4xBwEqiWr3leI+GJjMX5YPMy9xZHcB99PGiJyiFzua9BldDEOmd7deM1l8nhh+UWF2VhnPQZxQdz+MQFmjzH1jYNUtO25xi5oPCZGlXh/4lwJLq32fo+Nv9RSUV2/fexw7MP9lsl/89cnoURhJdID7ZFSC28lbP8/QSRXSQSzm6J/ts0rhqod07VWILILgkvuDZAAInUJ5KOsDgjWuaa67NBzfIxzXeUaHEQgUc2NXb6Y5rlTwJukAUh5091Nal44yZpCRLqtM9B7zv3PqIQSdf/bwPnCM8t1TqoO00yxX+Sea/asQcPAfID2PkJasjckKvdeVtwEZL0jJZgwe6/98R2jHhWVz39kjph3HHbDZES8NJz3uzyGyO82eVKJjkPHhySgYhQEs0jk95F79hCZQvbu90DcYJwusxyojnNuoyQpnUqqPUOdlhYp/g9Tv3DyqjW09tfvEiKS6J5evHIUDscZBVIP5hrgWOPUV/Gjn0nxBLiEmlOg4hRskTT9ZOqsaB7feeDbXJqwRPlo+1fSr3qt6ukBU13MvZA8T76zp956/pZCbcCcQJhe/aBtnXUmsg1Fy2GGOL7SGa8iyT78eRewn6ICBvFErCSQgc+c1Q3Nd0nMQky7TVjT+YRgOCD+Yuvvq3WUA1qlA8sXcqOhDeyx0LvvgfGqPtIyRsuj5VQXb9kVOB8/NZ0fqLn7JZIWml8T7DdUirGwnOMl6dL+vFfaxepXTH7wdhiLhG2QQQaKRPevUhr3ALV3w/Eedevv6VJEHMJRfiTfv7Vd4ov+kskO/Ea2KaqmlQQSe/24FT57vufdEFCcZF4Lh/ufcQYube9wQGeQbax41WMS+a+tWMzPwLeQiTjH2yXoQV35p9t1hqhEd6sdb1SMlo+EG16jlXxPnoktvkhSnPG9ZAd3+6Udr3Hq5crkSvX2GrDn5SEIKrFsF1M0lrX1rVV+oB1GFWX/CUW/QNOhdaTPoPsXZxJd1hFNvogas1quRXRuXNO1wgtCXFEd4n09n1ottSqVDo0c5a+Mko0UzEWXrQlqrTTVb7T0qLDJhpK4hW6yylzV6h+LVEWvJOvoEf0JmWhU4QoUZUsrHFOrzODl0igacRPmJKZifyYSQSaPOcJjTyXLn6FSipy5c6tZBdCTAQbq6+e7eumMXwPGxsRaLxXTzj+WGlet6JWMcLxYv6kPgkdBujXkV2Si7xknsx+7hVXVpb5P7Hmeal6Z8n9FgdBUU0WlTyTYwa0iU2BbViX2OafVyrGEkTwSOq57spLYhpw3BzefOdjLSDjbWi/cfbwSyOIFvNuIekLOQBZ8khUwlq8OeGxi6YXH2TXILi5c+XeD9tkqklxHdgi90Zc0avfePWlae57LAhnL1qt88EHlQTgaQ91SbOAdEVP0Po2rVNRqjfrI/Wrl9MCLlMfXaHbz5SbTpTkGIaN/T3zI5Bs1b3MP6PsNUIjvNnrekaaDQlERBu8H3he5FPmrFC9JzrYeNWgyC7n4/Pt9z9q5jJbjTSszzDddkQozA7LO8j0aj3jeYzysoHIk6REic1kmkuIowwqH1ekER2a1ZAq5W+Wn3b9GljbnnOkimh6P+Yk58Uby7c//JSwnjyk1uknHRlZNn2gVmh7aMpi9YdtWPP/kqjiYQS2f/zxV5qPs0uIWDZjYNJbsvFIlfMwdZ69Ua5VPK0mOwskACaqJ+/vm8QqiAdV6Zx+Guu7AsflT+g/zH1d/t77NWnTS3YhyyxY/rNwpBJm7zhdcRHvGPCMJdnQS/ZdYQokAS7REBlJrZb996sMRl+pGAtRZSzYqJTm1Uqzw0M1tKXTB+iiFw0+uwaPrXpW3VH8pWvRD7rSwfGuNVUSkcqQbJSoBRF4IvFgDGmmOXyJtLII8rao1aTcomNYz+aCJ3FQm7nwKV3cc5+6BDIsCEmU8yaEsuh/76PP5PJLzlV8eI9SLAftLgsH8E20BR7l/rdjMjcCPCdte41VC0UcWLyFSLA081doy9yzyZ6jM8KbPa9r4KxcYYm543um8a51mkRIa1Dp03idEmm9s253WTZjgGou5y1dJxNnL9dsZfcRDBpMKrSeru+MrqyJ7lJ9h61X9HdoR5EAuEgy28yJikKkgmi6uQSNxSU4oZlOpBd1/RDdpXLYzh9/0Y9tl5a1NKM3ailK1w9kF/eIcQPbCrrcZBqZ9Pc9MFrvB290a+3GV2TirMdVahG03e09T1Bikivkwfa71wkgaIwkv5Sq2n4/CzoS/7Z/viNUc8f5vNIQnht2RPeG9M8AACAASURBVBw2QeP0jwc8ycTH75Xdk57Dput1mjW6m9r8LXpivRQ+6zTdPg+y50rFWIhMsrjCfo5F7PbPv9FSwDhRoJUGL9xZhvVqEXrPBUWLuc4QfCc/Qf+Ify0uMl4ssYBjoeVdTLj3krvnw/CNUk0qzBXDXat4ZJe/ce3+lcH8W6zCvSOo8hbFwi+Z58eOzToIEFQYNXWJLlCdK4u3EMljDw8IlE1lnVlm7ZEa4c3a1y/p0fMAFindSLcHnXWQ+2gHRXYTnYRoFckcZN9TqICPFWRm5dyhocUGUqH1ZGwZJbv0MWD0I7L9s6/lgXZ1NELs/ZBR0/77nbtUKoCEIywJMKNEM95Y3EcaL9n3P/pU7rz1BpUmeA3zvdcJjfYt1dpr1njPDvViJYsdYeDlDAFGM5poPngpt+05Ll1k143Hrzt1BJpMY7dLEHYj49+KSwjb/S5Tm+1ryCYReJKaftj5swzs1iShvMF5r66eN1y4rt5GhObNdz9SqUQU8ux/brzYUhSBbf6gqB5EEtkAlkQsliqXu0kLvfAcLVj+jJZ4pmJelHEwh4yMBW12mx5jFAoS/bgviDTv/GmXltktfm0R3THxR3b914xILER98bT+sWcffW+ZWp3VLo9I6o8//yJ5jzhC7bhq3HVLQn1j0JwotztrTLfQjP1Erhg4rBB1LXVjscBbj+tAVM5rDUY57+Wrn9dEXSJ4QdKqsPvZ/p79EMBF6Ml1L8b8q+NV3YviUJP9kMk8MzLCm3muxUEbCRpNNKcdm9WQvHmP0Pr2juzyQL730afyz95/5JILz0lIWtEbUrKX7UrsrCqXvUk9d7Gj4gOOk8Hm199Nk93un2QqtJ5EjNCm8lF220jJgknk25uI4v+QQYbAjO1b9M1BLRVE0z8Wf0SK7ez2fcYrWXQFFuKNh3KXZ55+cmxe3ugYyYfPb9kqMxasUilKUEIQ8obPvvg2oQdvMlhnJFrsPU88rSYJmEPGz5NVjw5NSKTGzViqkUw8gV3SHJKeoePnq9PHrl9+00gd0oUgn07nWzz4gea6I5KeMp/cU+xyYEnkIp1+sku/VO4qU+LqQJhTMRYioyR8sgPAMwQh95PdKH7MJCuS9EZ0GN1v3xGzlFRC5l2fkOmwioSJyC54Qcy5fkH3LWD5q0m552hQt8Zy8knHaxGdC889U0iOi9LQJbuqlfhnu3cEpJj5hS0IopzDjsm6CPCs1mzeV4pder4u5vAz91fdQ96D/t+03IfmOhvhPTS4H/KzUkJ1/Ixlsm7Tq0p4+GiTCNS+93j1geSjd0SePDJxSIfACCAfSSrhUHeeqjHeYgM86P1HzpYyJa9R7V4UIpoqrWdGwQ2K2kDw67cbIt4qaweKaLp+g7ZfwQry7S0tnGjeQVvBaB7/+/aHB6V8qcv+T480Iozs8nciyTdVbpOm8hH4Pb3pNbWec40FBRX60GbOGdtd9v6zT+5p2T9WLhoi2rzrQ1L+lusSylhY0BENDsKWbXueJZwKorR4ZJcEPfSr6Gn9EWlvn+kZCxreeL6m8chuVD9mFiJImij1S3Jinapl1IM5Xp+Jol3IG3bv3rPfYoJdAcbMbtKkOctl5SNDAxclXh/xeM+Rq2rorZTFbhHe0X6ZDQmFi1asV2mOl+xCXIjQ82/IQsJ2f6LcB3ZM1kXAfROpckk1UX8hEhanVJ+kTHoy0sGsi0jmGrkR3sx1PQ7qaLwfFfSAJKpQCahdk2r6EUF7t+3zb9R+KUojAe2Uk48XqmT9+POvGjkhuSOsChp9p0rrGWWcYcfgAfrJp18pSXJRGz6Ezbo8JGVKXh3T7oX1w98zSjSppsaCwusBS+QMxwws0CjCEaWRVIXFkyMM7jddB06Riy84K6EVVpT+ox7D2NNr+u7OwcJj3IxlSva9Fcyoqsb95rxSw7SabmFHRTjcR9jKd43kzBdeeTu0Jj3Hg+3b72/TQh/+Mp/7/tkn/bo01G4hePcPnKx+yP5KSJxvxKSFMRmD974pX/o6lQpcc8XF0qdj/YRQRx0LZK9yo16yZv7w/YocoOHlGjkZQ3r9mN1Agwh0FD/moOeHa3dV2WaxxDrOxcLghALH7hf1dVaIePqy8+SayyFYt/ChWLUqfMWRAbVpfHcanJFroHH2kl0cGXhH7NsnWgHw6x3fR3Iwifqs2HFZEwGXI9Gk9p26APIHUJBn8c7p3bFBqKtR1kQg847aCG/mvTYHdWRE+tDULprSNxbdgJxUbdJHXlk9JXQsbIdScheHgE7Na6r3JqQ5mSpoqdB6hg40HQd4NcJjB7QJreHuPUWqiSY412v7oNSqdKtqeKM2qsPhs+wlZOhEn1j7Qpoki6j9ZabjEhV1oDyrd7EQb9wlqrTdr7QnMp/TCxVMKBlxfVFytMfgh2Xm6G6xCB+LSSQBrswnUWXu75dfe1dLUvsjgUhHkKqQjBiP5BE5wrGhe9s6MT12vLlEGQuLy4InFRBK28YrgsA4kQ2w2MuIHzPjSxQtjuLHDDmgeqF/VwCLvOETF8qLKyaojp2o/JInN6htXc27bkkDDdiNmrZEdd7OjQKMW3UfJccec7RQ5Y7rs+mlNzUZDe1lUKQ2aPeH3Zb67QbLOxtnx84dRMAz07NjYzmwCATdL8jjPt7+VRoLwgM7EusdBIzw2n2gCBBJvP7KS3T70TW0vsueek41q3wE/9y9O9C/lY/KstXPyV23F49VRcpIFbRUaT0zenkzmhCXSqLpyG7Nu0rHKpCld36QXWym5k3oFam4QHrPc6B/l4js4vt6TbGLpOm9FRJq5liUnH7qSUKiGUltU+eu0C35J2YPVu9YIsVvvfdJwsg+pXCp1Nem0d2qXZ21aI1qTKm0BJmCEOfKnSs0YhwU0YSEQfwoJFLulusSwppoLCSoNe08Ql0XKImdqKXCj5mS1fgp+6PFbPVG9WOG9LITMXpAG10QYEWH8wc2ZSTJMicis/Mn9gpcjHJda7XopzZrN19fVBav2KhTnzy0oxx5ZF69Pl/t+EFmjuqacEHL7g9FJJ5ZAlk+KgYf4+P96LyCExHwA/1MWP+ZAwH3/SPIsGRav9huIc9yo47DpNil50nH5jUyx2BzyCiM8OaQCx02zWVPbZKn1m/WevGHHXaYrN6wWT8yzl6McsD8e5iXpjtPRqqgpUrrGTbnKH8n6r3iPy/qSjyKDjmsz4wQTdwbqDrmyu2GnSvo706PmNXJLvN754PtWsRiRJ9Wat/llTGQ6EWVrl7DZsqGx0arA0K8RgJUq26jJH/+o+SDjz7T6N7Qni00+ums4CirDZlN5KWJBOKpZ15WiQBb5zgsOLILmZoyrJOOIZF2FQ0s1we/ZG80nogQRRyWTh+YsMqdm1+8sTiyS9KWI82JxpKZ/JghmmiiXfEKlywYb05B9z0657lL1srnX3+ni3scSmiO7Ea5PhyP1ppiJf3vbyx58hwmMxc8JQ/PWyWu2E0UAp7eZ9d+lzUQ8H7/WCy3blhFLR1ZoLOgXvLkRsHTnCRZawcPASO8Bw/rTH0mIhK9h8+QTS+/qZEXfDNJtsG6DA0cZv2r5w2LlJSRiipoqdB6pgpwv2tCevvNKNFM1TjYfj3tlBOzdGQ33jUI0uz+6yt7lVY9oxHtw9rKldLm34isstWfL28e1QHTXH9EarEXI4KLIwn/H6XFI7v0+eDYR2XBpN6BlnL+vv2LJGQR7364XS45/+zIvsjxiCFyhSg6Wjce/64LhWie2/ym4JJCcYV48gj321Ro9En4YXGCvhi5VLw5RXGScGOKd31chJ3Kfo4Q+68HiwQiyvhl07iPeFdybyRDwKPcQ3ZM1kQA28e33v1EurSqpdKFRh2HyrVXXCL/fedDXZhTVOjCc/+1v7R28BAwwnvwsM4SZ6LKEoSV7RaiUW77pUKZG6RGxVtU90eEA+mDq+jln1iqq6BlCeAiDDK7Es0IUz/gh+A4UKpqB3UFcElrnBTf17L33K8RehedJVI6c+FqleoEWUnFI8+c49o7Wu5XtCLe5ILIbvP7R0r+Y46UW4pfqRIJSFKi5iW7xx17jPQZMVP+9/HnSsbWv/CG/n7IA80SWmIFkV0sBKPoaBmf34+ZBTEaWJK4rr78ImGHiCSdmpVKB04nlRr9RHPi3UQFNu+Cxj+oRGQX7S3Sh0rlikvVO0oGFkbhPbln7z+xyof+MSVb4OWAPyR2gkOGALsLLFSRwWDbmYrdwkM2mSx8YiO8WfjiHYyhU0Ri9uI1MmVoJ5m//GlBH8jHbuUjQyJ7CWZUB3sw5mnnyPoIOBJGFUFkBdx39w+YLH/8tVvlBDR8YutVK6tJWUEVzNyOhj/hDaLcttc4uafyrXLTdUWFKGAQYaaPYRPmy7hB7XTh6CXQpW+6Uv6z8VXdon960UgdSxBpHjJunmqQC51youCCgkNF7sNy6/PI7xp2GCq1q9yaUNe75Y335cefd8WO8SaiRdXRev2Y2Zat0ayvQMDPOfNULTfMYuDWGp2EineMNazFixbPWviUVga87KLCSlidR7K/LyLL5Wp3URswJ81I1kkC6Qje3Y1q3aHXx6+dhqD0GT5TTjvlpJjLRqI5xSO7WMpFLfAShpf93RAwBDKOgBHejGOYbXtg67dCvW5S5OLCsv2zb6R+jXIa7Xj1zQ/kwe5Ndd5EgBMZrhvZzba3R6acGNn7EMMq5W/W+/Tcs0/TErZk6Pu1mkETIAFz6/vb0pTGfuW/78t9D4zRrevjC+SXCTOXaQSRggNhLUhq0WXAZE2qg0CHNVchbuPSMcIuDPIKSO/cx/6jBDhRARJv36nwuoZADxrziLp7QBqppgbpbdB+iLRtUjWhiwRj8Wv0sQfD4eCi885Sy7YXXtkq6559dT+bN+88iNxjH0bLqJNEUKIgOGPVuHX9rIS6aT8BT0+Bl7Drb383BAyBjCNghDfjGGbbHnjh423atE4FraLGh7VSgx4aLaMi06NL16kB/LyJvQK3aFJRBS3bAmwTOyAIcN+iGT337EJq8r73n3/2I7tRvKHd4BzZpUISrgA0J2/wFi2A6ODF6i1Fy3Hlat8vfTo1SGOPRpGXak37Ro6IuvO98Z+H1UWApDRI70fbvlRnASrDhbVU6Gg5B1uz0xeskukP3a+nnDTnCdnyxnuaQAghZ3ER1rwafdwnWDxQAAWvXDyKsYVjoV27ym0Ju0qFkwQ7WM889/p+HtUk6tJ6tq8XNh2VzkDAM+q7HXoiO8AQMATSjYAR3nRDl/N+SJIGJT/5CLEdW+jkE6Rr69qaRGI1wnPe/ZAVZhxPq5mMN7Srruclu8ybrWpKzT728ADd9XBE5++//96vap1fu+rs5epXLycNa5VXGEkaDSpj7HDGNQUySBlvGqT3w0++0D7w8P3fJ5/rs5io2lcUHW3YWIg2V2nUUyPnVxa5QMdCQuZVRS+QIhefq4mvRG2vv+qSNIVR2O3xy0goeFP8rtby2tpp8sOPu6RNjzFKehc/uVH1weiCE7VUOEkQ0ec+8XtUY9u3eGo/xTNsJ8uNMdW+21nhGbMxGgJZBQEjvFnlSh3icfJBILpLeVO2JIl6uCSg9GSeH+Lp2OlzCAK9hs2Q7Z9/E7MES9YbGjL0zv+2x4gdsLHoa9d7vEwb0Vn/PSiqFw9iv5cyWl8y/nmGsD6jkpq/CpvrB3LYpNNwjYbWr15W3SQgYguWrxeikSSgff3tTrm/VS1NHkNqMGLyQnmwe7NYRTrvmPw6WqKlD89bKd/98LOUuP5y6dm+7n5V2NzvWQhQLereqmV094cdH6LWbXqMlV9//0NdMZaveSE2FgjxO//bFvOpdf3wXrmxYuuYlhl8IL1ffP19zOYrmVvVPyd2mCDg+2SfUBktig2UN1HwhOOP1YqTYEMD15b1KgU6bKTSdzuZeduxhoAhEI6AEd5wjOwIj+6ubeO7NcJLdSOa0ycmk3lugBoCBwsBkokggiQmZcQb2o3XkV3KGpe4vmiM7JLZ/8i4BwLJKr93i0bKd+Ol7KqxVbjtBhnUrYng4tFz2HT1via6Ga+RMLbg8Wfk9EInqURizpK1Mn3eSnG+tG6OXe+rLQNGz5HqFUrJfQ2r7NeVX0dLtBqvXxLBcDmg4AzOC4ns0yCTcxavkWoVS8mpBY+X6s36ys3XXS6dW9ZUiRNV1uq0HiTlbrlWVj79UuC8IMMQf/ICKBUN6SVCDPFHNoXU4YLCZ0jzunfFEvwoRoGTgrf5nSQoUIFOmtLMBY49RlY985KM6d9GFxZB7alnNstDUxZqQZaTTzpeWnQbqQucRVP7agLbqKmLNRJM2fQozW8p9/GnX2lFN5IFsXy0bP0oKNoxhkBqEDDCmxocc0QvRLLyHH5YbK7pyTzPEUDZJDMdAqnwhqZsb6MOw8RPdumbQhMkT11R5ALp26lB4Py92tVba3SU9k2ry+r1L6vbAEQTFwk0sCRvhTUsAotXaq1aWkztXYO03T9wsprdxyO77jg3FsglOmP6GT5pQUxHi/d2pxY15KqiF4YNRSOgRIeXzxyUplIZFRzR9yYi8SwEhk9coBXUWjeqIiwIXCJbwRMKaAltFi4bXnhDFk/rJ3MWr5VFK9bLqrnD0kSuvU4S2z77Wmq26K/ewNUqlFRsSWJEG7x2wYjA+RDR/2nXb+q7TH7CjAWrpG2Tajo3kgQll6gEw2mpEwHj992mj0eWrJVqFUrp/D7e/qXMGt1dChx3TCi+doAhYAhkHAEjvBnHMEf2kIrM8xwJnE36kCCQCm9oyBCRSBLE4skY+Hv5Ol1l7MB2UvTiwgnnSQGFElXaylvPzJS/9+yRDn3GK+lFJ1+21LVS865bQnGCwLXqPlpeXjkp5hWLjKFOm0GBkd14nZKwhV6VMrtOUtC9bR2VJyyc3FsrxoU1Cj4QiR3eu2XsUEf4EpFdb78k1RGJx+qsRvN+ijMSD+cCM2LSQi3x/OU33yUk0PRJIh16ZQi7w5bKezdUvE/1wkGWdN7xUEL4lJOOV420SxJsdm8F6fbgNNm8anKo5trru811HTllkRyX/+jYgoKo+g8//hwpKS4Mf/u7IWAIhCNghDccIzvCh0CqMs8NWEPgUCEQzy6PLXqitWhkE201J9LsNu0yQiBWzmqMbfY167dI384N0tj3ob0teXc7mTOuh5x7ViH1DIaYITUgEe6oI/OGQkOEt0ytzuoTiywiPWSXk6C9xc93zbzhGp11OuMbr74sZj8YVuUPfXGZmp2VoCIhoLAHUdioZNc72Xf/t10atB8q65eMSuPFi+SCSHKUPifMfFzy5s2jkXKH7Z9//S1H5surxD5K41zIGRyJh/SiW0Z+QsSYa7hvn4QSX86FE0W96mXlsovOiSXmQcgh5hRAsWYIGAIHHgEjvAce42x5hiiZ59ly4japLI+An+zu3btXBox+RK2piMxu/+IbGd2/jVYbjNcoWjB4/DzZs2evDOzaOHYIv2/Xe5ysXzJaqxDu+O5HOfzww+TFV96OW6aWSmljpi2R0QPaqM6Ycf2061dhG3/Z6k2y8cX/KuFrWrtCrGoYlmvnn3N6jGSRPEYkkrF8teP7pCK73rkhKSAK3rdzQ41C8t/oXj/a/qUMm7BAXt/6Py2FOuD+xhp5RUuMxrdWpVtjY4E4E+ldumqTVpOLQkzj4cuc0AN7Ld+SjRY7S8UFk/vICQXyK7aUdG7XpKouPMD2jz//kttLXSOnFjxBh0GE/vDDD4/Nh+uMrKNMyavVGePwww7TojuU5Z78yBOy5MmNWuqYIhlU9yOvAcs2fJr9ZZa98hAXReeclcvfrL+3ZggYAgceASO8Bx7jbH8Gf+Z5tp+wTTBLI+D1hj4iz+HSvs94eenVd3X7m4RM50Cw6tFhWgo0XiO6d2/rQXLdFRerRpTta0r1DurWWKUJrvJWmCTgP8++KgNHz5E6VW/XRDZIV5ueY3UMnVrUFEgXkU0iwTu+3anuEEQE/QlbRJavKnJBQs1uootGBHfqIytk9uK1MqrfferSAHlr0nm4RkkpOvPOB9sE262FU/rKoDFzhYXC+Afbp4mG//Lr79K+93gZ0LVxYOJdlJvHuWu0qFdJq689tnJj0gTaefSC420lrtZrSXJhp36TFD9sFTe8+F+ZNaabJsV16DNB533v3f/n/UsUHQtGrsfssQ9IwROPk5bdRskPO38WZB9YlrFoueDcM+TaYhfr9fGWsXZzpSAKyWosbiDOvDMffnSl9OpYT6UXUQh4FNzsGEPAEAhGwAiv3R0ZQsCfeZ6hzuzHhsBBRoDt8xZdR2rVsJ5DH44lj0EgKel7w1WXBo4IFwJILiTqyiLnS6sGldWmzF9mNsyjmkpdIvs0+/+hKYvkhS1bZf6kPrGErA0vviFT5qyQTz77OpYw5x8UpXCDyHkykDInyjLv/nuP3Fy5bWwR4PpYvGKDjJi8SOdL2eQoWthkzu89Fo1ynxEzNTqb3mgx1/fJdS9Jm0Z3K8mkctqwni2k4u036qmIXBPBxn4MAh80J3CB3M5b9rQmslFa3fn2Eu2mX+zcXEKjf84skPqNnC3vf/iZtGlcVW685lIlvskS8PRiab8zBAwBESO8dhdkGAFv5nmGO7MODIGDiABkcvGKjarrdFKHyy89X71XNzw2RrP1k2l+suv0vqWLXxFX1uDtm8VjsduayNzxPbWIg2voSCHgU4Z1Viu0g9Fe3/qhLgS8CXEQO6KgiYhhqse28In1cvN1RTMULXZjwqEhz+GHq+bZNeaEv/jZZ5wSicCjdUa/iyuH9/oQ2Q0iu15M1m16VT759GtpXreifLjty3QT8FTjbP0ZAjkBASO8OeEq2xwNAUMgLgJoMCs37CHLZgzUogSO9Ja4vpjUqVpGk9iwkEKT6a3EFa+zILJLFI8t9ErlikvVO0rGHBX8fRAFLFK6kRZnwKOV5vf9PViX0VmVgQtzPxRkN9VzRV+NZKFGxX8dMNIzJ6zFsDyjGlxGr08qCHiqMbL+DIHsjIAR3ux8dW1uhoAhEIoAfquT5iyX/l0ayTXFLpI9e/9R7eyQ8fM0MYvoH9pUtruRLEBCIbGU1fY2PGeJ5KLh9Ts5IDnoM3ymFi/wRhj9g0N3ima3Y7MakjfvEeobGyVyGDrJdBzgNLD4xr7/0ada/vhAyxjSMczIP8ExAw3yyL73aVGLjn0nJh2tRtOLxhoHCDS70+evSvf1SQUBjzx5O9AQMARM0mD3gCFgCBgCaj81aYF0alFLS2a37z1OCxBATnFQwJJqwKg50qNdXa3elYiEBtmW4RyA1nPr+lkJrayoxjV+xjJh+/tgyhji3QVYEFItjeh3Via7bm6QXiQsazdu0eucnjkRiV+9fosW98jI9UkFAbcn1xAwBKIjYBHe6FjZkYaAIZADEHCJRKvnDdNEJdf6j5ojJG2FkZzZi9eoxdnU4Z3SyCAeHDtXu+rZvl4oipQd3r17z0HT7CYaEBXmsEI7kAlqoYCk8IB3PtguUx55Qkb0aZXuOeGmQXnjRGWKoww5FQQ8ynnsGEPAELCkNbsHDAFDwBBIgwCer+pJ6ykRnIyWFjJEAppX8ztp9nKtZrZ4ar80JNqgNwRSQcANRUPAEAhHwCK84RjZEYaAIZCDEKCAQrWmfeWxh/urfjcZshsPJkd2503oJYVOOVE+3PaFRoq/+XanJlGhkT3ssNw5CGGbqiFgCBgCBx8BI7wHH3M7oyFgCGRyBFav3ywzFjylVbreePujdCcmPfXMZnloykJxZPfZl96U+x4YLU1q3ymlbrxCfV3z5c0Ty/rP5LDY8AwBQ8AQyLIIGOHNspfOBm4IGAIHEgGcGe6s200GP9A83Vpa5A0kv+HnS4Z/mVqdpUGNcvLCq2/LlKGd5Oij80mFut01ecpfjvZAzs36NgQMAUMgpyFghDenXXGbryFgCERGIFUVzDgh0d1Zi1bL7DHd1fVhwqzHZfygdlK/3WAZ0qO5FLv0vMjjsgMNAUPAEDAEkkPACG9yeNnRhoAhYAikC4Gt72+T/iNnqzaYBunt/uBU9eadN6mXlpq1ZggYAoaAIXBgEDDCe2BwtV4NAUPAEEiDwN69/0iLbiM1Ua1+9bKSK1cuefm1dzUxjgpv8x9/Wj79Yof+vfbdtykBphrYV998L4XPKmRoGgKGgCFgCGQAASO8GQDPfmoIGAKGQDIIUMq4U7+J+pN2TarJVUUv0KptLbuNkoq33yi33nSVPLp0nZxz5qnSq0M96dBnghx9VD55qE+rZE5jxxoChoAhYAj4EDDCa7eEIWAIGAIHEQEivZs2vynXXXGJ/PLb73JbjU4yvHdLqXDbDToKPHzr3DdI8uQ5XI46Mm+6qoEdxOnYqQwBQ8AQyBIIGOHNEpfJBmkIGALZEYE5S9bKSzg2DOscmx4yhtY9xkjuXLmM7GbHi25zMgQMgUOCgBHeQwK7ndQQMAQMAZG1G7fIo0uflrnjeygckF1kDHv37jWyazeIIWAIGAIpRMAIbwrBtK4MAUPAEEgGgb/37JWazftKkYvPlap3lpBpj640spsMgHasIWAIGAIRETDCGxEoO8wQMAQMgQOBAMUp1j33mnQdOEVuuraIRXYPBMjWpyFgCOR4BIzw5vhbwAAwBAyBQ40ApHfWojXSoGY5yZf3iEM9HDu/IWAIGALZDgEjvNnuktqEDAFDwBAwBAwBQ8AQMAS8CBjhtfvBEDAEDAFDwBAwBAwBQyBbI2CEN1tfXpucIWAIGAKGgCFgCBgChoARXrsHDAFDwBAwBAwBQ8AQMASyNQJGeLP15bXJGQKGgCFgCBgChoAhYAgY4bV7wBAwBAwBQ8AQMAQMAUMgWyNghDdbX16bnCFgCBgChoAhYAgYAoaAEV67BwwBQ8AQMAQMAUPAEDAEsjUCRniz9eW1yRkChoAhYAgYAoaAIWAIGOG1e8AQMAQMAUPAt/hK7wAABvhJREFUEDAEDAFDIFsjYIQ3W19em5whYAgYAoaAIWAIGAKGgBFeuwcMAUPAEDAEDAFDwBAwBLI1AkZ4s/XltckZAoaAIWAIGAKGgCFgCBjhtXvAEDAEDAFDwBAwBAwBQyBbI2CEN1tfXpucIWAIGAKGgCFgCBgChoARXrsHDAFDwBAwBAwBQ8AQMASyNQJGeLP15bXJGQKGQFQE/vxrt7z17ifyyWdfyV+7/5bTTz1Jrr/yEsl/zFGRuli8YoM8/8pWGTewnR7v//94nbz17sey++89ck2xi/b78+9//CVrN26RIhcXlgsKnxFpDHaQIWAIGAKGQHwEjPDanWEIGAI5HoHXt34oDwyeJl98/Z2cUvB4+fvvPbLzp18Ul0Hdmsjdd5QIxWjcjKWyfM3zsn7JaD3W///xOmjXe5x898PPsmBS7/3+/PWOH6RMrc7StXVtaVCjXOj57QBDwBAwBAyBYASM8NrdYQgYAjkagW+//0lKV+8gl1xwtozo3VIKn1VI8djx3Y9KWgueWEA6NKseilGqCe8//+yTXb/8JkcemVfyHpEn9Px2gCFgCBgChoARXrsHDAFDwBCIi0D/UXNUfrB63jA56/RT9jsGacFRR+aVvXv/kUeXrZOlK5+Vjz/9Si489wxpWb+ylLvl2rgR3YxGeJFYNO08Qlo1qCw3XVtE3nz3YxkxaaHce3cZWfzkBnnng+1SuvgV0qBmebnsonNi4/70ix3y0OSF8vLr70m+vHmkxPWXS5dW98gJBfLbHWAIGAKGQI5FwCK8OfbS28QNAUMABCo16CGnFyook4d2TAjIqKmLZcHy9VK7yq1y+aXnyZoNW2T1+s0yf1JvKXbpeftJGDJKeCHa197RQob2aC53lS0uz21+S1p2G6VjrF+jnJx52skyZ/EaKXDsMbJoal/9dxetvqrohVLzrltk58+/yPR5K5UQTxnW2S64IWAIGAI5FgEjvDn20tvEDQFDYM/evVLstiZKILu1rh0IyA8/7pKSd7eTTi1qSpPad+px/PbGiq2lWoWS0r3NvQeN8C6dPkAuPv8sHcMzz70u6IA3PDZGTj6pgEaAFz+5UZ5dNkaOOjKfHrPwifUycPQjsunxcXLi8cfaRTcEDAFDIEciYIQ3R152m7QhYAg4BK69o6WUL32dDOzaOBCUV9/8QBq0HyJnFCqYxrXhvQ8/lVuKXyETB3c4aIT36cWjpNDJJ+hYt76/Te5p2V8WTukrRS8uLA07DJVX/vu+6pFd++XX3zUZb8m0fnLphf8nfbA7wBAwBAyBnISAEd6cdLVtroaAIbAfAnXbPCi//f6HPD5zUCA6z23eKi27jZQe7erKWaefnOa4AsflV7KZ6qS1IEmDl/BCuKs36xsjvLVa9Jfch+WW+xpU3m8uxS47X46NaLFmt4khYAgYAtkNASO82e2K2nwMAUMgKQQenrdSxjz8mIzu30bKlromzW+Jjm777GuB1N5Rp6v07dRAalYqneaYffv2Sa5cuTIF4e05dLq89No7smruMDky3xGxcboxJgWMHWwIGAKGQDZCwAhvNrqYNhVDwBBIHgGKTNzduJfgbtC6YRW56bqisnfvXnnvw89kyiNPSLUKpdSWDK0smtn+XRrJ1ZdfKOh6N738puTOnVv/nt4I7wcffS6dWtRIM/B8efPKtVdcHDdpLVGE10V8S95QTFrWryTHHH2kvP/RZzJr4WqZ/tD9UuC4Y5IHyH5hCBgChkA2QMAIbza4iDYFQ8AQyBgCu379XcbPWCrzH38mTUe33nSl3Newimpif/7lN40EY2HmGlZfyBzuuPV6GT9zmTy++rlY4Qn//8cboSPR/r9R/IIo7TXlm+/n0vDMklFyasF/NbyO4OLSUOSiwvpvuDkMGjNXdbuulbi+qIzu3zZN1DdjiNmvDQFDwBDIWggY4c1a18tGawgYAgcQAbb+qXz21+7dcspJx8sRcQo+4M7w3fc/Sb58R8jxx2Veb1sI+q+//SEFTzgu7jwOIIzWtSFgCBgCmQ4BI7yZ7pLYgAwBQ8AQMAQMAUPAEDAEUomAEd5Uoml9GQKGgCFgCBgChoAhYAhkOgSM8Ga6S2IDMgQMAUPAEDAEDAFDwBBIJQJGeFOJpvVlCBgChoAhYAgYAoaAIZDpEDDCm+kuiQ3IEDAEDAFDwBAwBAwBQyCVCBjhTSWa1pchYAgYAoaAIWAIGAKGQKZDwAhvprskNiBDwBAwBAwBQ8AQMAQMgVQiYIQ3lWhaX4aAIWAIGAKGgCFgCBgCmQ4BI7yZ7pLYgAwBQ8AQMAQMAUPAEDAEUomAEd5Uoml9GQKGgCFgCBgChoAhYAhkOgSM8Ga6S2IDMgQMAUPAEDAEDAFDwBBIJQL/D3r5uY6aC275AAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "color_dict = {\n", " 'up': '#648FFF',\n", " 'down': '#DC267F', \n", " 'combined': '#785EF0'\n", "}\n", "\n", "box_count = 0\n", "full_df['Batch'] = full_df['Gene_Set'].apply(lambda x: x.split(':')[0])\n", "fig1 = go.Figure()\n", "dir_batch_df = full_df.set_index(['Direction', 'Batch'])\n", "for (d, b) in dir_batch_df.groupby(['Direction', 'Batch']).mean(numeric_only=True).sort_values('Rank').index:\n", " fig1.add_trace(\n", " go.Box(\n", " y=dir_batch_df.loc[(d,b)]['Rank'].tolist(),\n", " name=b.split('_')[1].split('.')[0] + ' ' + d,\n", " marker_color=color_dict[d]\n", " )\n", " )\n", "fig1.add_trace(\n", " go.Box(\n", " y=rand_df[rand_df['Method']==f'random']['Rank'].tolist(),\n", " name='random',\n", " marker_color='black'\n", " )\n", ")\n", "fig1.update_layout(\n", " title_text=f\"{ko_gene} Term Rankings for L1000 Gene Sets by Batch\",\n", " xaxis={\n", " 'title': {'text': 'Cell Line'}, \n", " },\n", " yaxis={\n", " 'title': {'text': 'Rank'}\n", " },\n", " showlegend=False\n", ")\n", "fig1.update_xaxes(tickangle=45)\n", "fig1.show(\"png\")" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAH0CAYAAADFQEl4AAAgAElEQVR4XuydZ3gUVRuGny3pCQFC6BB6ky4BAZEAUj9AQUG69A7SQRABKYIooPQOUqQpahSkBzWh9y5dWugJIT27+10zcROS3bB9suWZX4adU+Y+76y5854i02g0GvAiARIgARIgARIgARIgARIgAQkIyCggElBmEyRAAiRAAiRAAiRAAiRAAiIBCggDgQRIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCghjgARIgARIgARIgARIgARIQDICFBDJULMhEiABEiABEiABEiABEiABCoiFMXD/abyFNbA4CZAACZAACZAACbgWgYIBXq71wHzaDAQoIBYGBAXEQoAsTgIkQAIkQAIk4HIEKCAuN+QUEGsOOQXEmjRZFwmQAAmQAAmQgCsQoIC4wihn/YzMgFg4/hQQCwGyOAmQAAmQAAmQgMsRoIC43JAzA2LNIaeAWJMm6yIBEiABEiABEnAFAhQQVxhlZkBsNsoUEJuhZcUkQAIkQAIkQAJOSoAC4qQDa+RjcQqWkaCyuo0CYiFAFicBEiABEiABEnA5AhQQlxvyDA9MAbFw/CkgFgJkcRIgARIgARIgAZcjYImAHDx0BiqVCpDJ4OXhjhx+PihdvBDc3d0ycIyLT8SusKOoWK44ShcvLCnjf+89womzVxBSpypy+ftJ2rYjNEYBsXCUKCAWAmRxEiABEiABEiABlyNgiYC8EdJdh5e3lyd6d/of+nZpCZlMJn7+4OFTvPvRSIwZ1BEft2tqM8Zdh8xAUOF8mDa2V1obv+87jDFTl2Dz0kmoWLa4zdp21IopIBaOHAXEQoAsTgIkQAIkQAIk4HIELBWQfl1bYWivDyBkOW7fjcSmX/Zj228H0adzSwzr86HIU63W4EVMLLy8POCRKTtiTeBdBk8XBWT6uN5p1SYnpyA2LgG+vl5QKhTWbM4p6qKAWDiMFBALAbI4CZAACZAACZCAyxGwloC8Cu6bJVuwatMOrP32U9SoUhYJiUnoPXI2Bnz8HuoGV8SZi9cxe9EmTBndAzv2HRZ/bli3Ojq1aYTbdx/i68WbcPjkJXh6uKFercoYNaADcudMnT71MjYei9b8jLBDp/H4aTTeKFsMndu+i5v/PsC3K36EkIEpW7KIeO+YgR3ELMyshT9g7pRBCAzIKf77hSu3MHvxJhw7fRmFCwSiZePa6N+1NdzclOLnE79ahYBcOaBWq/Hb3kNwUyrR8f1GYv8yTy9z9IChgFg4ghQQCwGyOAmQAAmQAAmQgMsRsIWAvHgZh9otB4oZECETImRHgpv3w8zxfdGqSR38deQs+o+dI7IuGVQQ5csEoUqFUni33pto8OEwVK9UBu1bheBZdAxWbPhNlIwls0ZCpVKj08CpOH/lJj56ryEqlSuOv46cQ1x8PD5u1wwTZq1AYO6ceL/522Ld9d+qgpt3ItF39NfY9cNsUTaENSHNO48RMyXd2jXFpau3xYxN+9YNMGnEx2K5D/tMEv+9WsXSaFK/Bu7cf4SN2/eJfahXq5JTxQgFxMLhpIBYCJDFSYAESIAESIAEXI6ALQREgNi042iUKl4IC2cMy1JAvhzfB62b1E1jLmRFtoSG4eBP88RMhnAJU7qmzv0ef27/DqfPX8PQid9h9sQBaNGoVlq5R0+ikDdPTuibghV+7HwGAZn+7TpRJiJCF8Lfz0es4+slm7F6004c2DZPrEcQEEFWhKyJdh1L64/Ho1b18pjwSVenihEKiIXDSQGxECCLkwAJkAAJkAAJuBwBWwlIcPP+YvZAWI+RVQZk75Y5KJA3dxrz7sNmitOiypcOSvu3mJdxuPvgMbYum4ywQ2ewcPV2/P3LfL07WhkjIMJC9aSkZHFRuvbSZmRWzx2HmtXKiQJSqXyJtIyIcN+AcXPF2xfPHO5UMUIBsXA4KSAWAmRxEiABEiABEiABlyNgCwG5F/kETTqMwtQxPdG2xTtGC8hH/aZArpBj4Mfv6YxDlTdKYeXG37Fi4+84/scyeHm669xjjIAIbfh4e2LV3LFp5QXpEeRnxdejUbvGG3oFZMiEb5GiUlNAXO4NMfDAFBBGBAmQAAmQAAk4B4H5I5IyPMhHw5XIW0TuHA9nZ09hbQGJT0hCzxGzcO3mPYR+PwP5A3MbLSATZq7AoRMX8Pu6WRkEQ6PRiFOhtu/8C5/NWqmzFkNYG6JQyMWpVr4+3pgzeWAa5cxTsMbNWIbQ3REZJGbR2l/EzMrODbNQtFA+Coidxahdd4cCYtfDw86RAAmQQLYTOBeuxj+nVGn9KFpWgeDG/KU22wdGTwcoINKNiqUC0jQkWFzHIUyV+vfeQ3HNxrOoGGxcNBFVKpQUH8TYKVjCwm9h+tM7b1VB/26t4evjhcvX/hXXZwjZCZlchpZdx8HP11s8a0RYJH7oxEWcPn8VX03sL94nyIQwTcrdTYn8eQNw9ebdDGtATp67iq5DpqNpSE183L4prly/g/krfxSnfS2bPUrsr74pWMyASBeTDtUSBcShhoudJQG7JRCbAHy11StD/0a0TYC/j8Zu+8yOGUfg719UOHUwXUDKVJOhadeMJzYbVxPvkoLAysnJiHuhQc9JbvDxTz3Qjpf1CVgqINoeCYvGAwP8UfvNN9Dh/YYZTjwXsiI1mvXV2QVr39Y5Yobk1UtYjzFt3jpx3Yf2EnaemjtliJgVufjPLXw+e7W4S5X2Gtm/PXp2aAFh6tfEWStx5NQl8SNBWoSr96jZ2L3paxTKn0f8+acdf4pb7WovYdrVjHF9xAXowiVM06pQtliGNSDC4nch0yIsqnemi2tALBxNCoiFAFmcBEhAJEABcd5AiH6qwcn9Kpw/pEapKnLUaqZE7nzO+7yO/mQUEGlG0BIBsWUPo2NixTM/AnP76z17Q8i4iJ/nyalzwODz6BjI5fK0Xa709TNFpcL9yCfI4euDnP6+tnwUu66bAvLf8AinZT56+hx5cvvrPbFSCDghaHL5px5Io70oIHYd3+wcCTgcgSnrvaDWAJ93joeCs3Qcbvyy6vDJAyqEh6pQrb4Cb7/HU5HteWApINKMjr0KiDRPz1acXkCEky1bdEnfcUA75ELK7tjOJeKPBw+dwagvFiMuPkH8edLI7uJBNMIl/NvYaUuxP/yU+HPlCiUxf9pQUVSEiwLCl4gESMCaBCgg1qRpP3VRQOxnLAz1hAJiiJB1PqeAWIejo9bi9AKSnJKa6nr1EhYqHTx0GjvWz4IwP/CdNkMxuGcbdG77LsIiTuOTifPTTq4Utl3bGhqGdfMniHMAhf2YixctIG7xRgFx1LBnv0nAfglQQOx3bCzpGQXEEnrSlqWASMObAiINZ3ttxekFJDP42LgEhHwwDJ8P74ZWTeqI2Y+Bn87Fqd3L0+b6CRkTQUY6t20s7kgg7LTQp3NLsapdYUcxYvIinD+wWtyajRkQew1t9osEHJMABcQxx81QrykghgjZz+cUEGnGggIiDWd7bcXlBGTx97+I+zD/unaGuNZjS2gY1mzeKWZDtJew5VmxIgUg7G4gnKg5bWwvUUKES9gFoV3fyYgIXSguMqKA2Gtos18kYP8EHkbJsCjU06iO9m6WiCKBaqPu5U32R4ACYn9jklWPKCDSjBUFRBrO9tqKSwnIk2fRqN/2E3w3dSga1asujokwxeqPA0exbfmUtDES1oP4enth0siPUbFBDyz6cjjq164ifn791j207j4Bezd/gwL5AvD8ZcZDi+x1oNkvEiAB+yMQ+VyGOT8atx3roFbJCMrHLXntbxSN69HRPSkI+zkZwY2UaNDWuDE3rmbeZW0CCz9NQOwLDQbO8IQvt+G1Nt60+nL56p4obrPGWLHdEXApAZm5YCNOnbuKTUs+F6dPCZcxGZDp43qjSf0a4v2ZMyDxiel7u9vd6LJDJEACdk3g/jNg5mYFfD2Btyvqz24cuiRHdCwwoo0KxfLb9eOwc68hELErCXt/TELtxu5o3I6/eNlzsMwZHYuX0RoM/8oHfjl5DoitxsrLw7a7wcUlAnfTj/Qw+jG8PIAigUbfzhvNJOAyAnLn/iM06zRGPBxGOPhFe2nXgJzeswJubkrxn5t2HI1u7ZqkrQFp1qCmePKlcHENiJmRxmIkQAI6BLRTsHw8NAgum6KX0IlrSsTEycApWI4dQJyC5TjjxylY0oyVradgXbkLfL3N9GcpUwgY3c70cixhGgGXEZBxM5Yh8tEzrJk3LgOhuPhEBDfvh7GDOqKTnl2wlm/4Ddt+OyjuguXt5YH+Y+dwFyzTYox3kwAJZEGAAuI6oUEBcZyxpoBIM1ZSCYhSAfh7G36mJBUQEwdQQAyzssYdLiEgV67fQdteE7F+wQRUq1hah5twxoew8Fx7fTasKzq+30j8Udg1S1gT8ufhM+LPFcsWx/zpnyBvnpziz1yEbo0wtJ86Ii4qkZic3p/KxVUIyMF59/YzQs7VEwqIc43n656GAuI4Y00BkWaspBKQAD+gTvrElywf7ukLIOIiBUSa0QdcQkCMgalSqRH5+BnyBuRMm4r1arnomFgkJ6ekHUCo/YwCYgxdx7ln9jZPvIxPn/PbuWESyhTiOh/HGUHH6ikFxLHGy5LeUkAsoSdtWQqINLwpINJwttdWKCAWjgwFxEKAdlZcyICEX1SKEvJm6RTUrZDCDIidjZEzdccVBOTUdQWiX6ZLfVB+NYrnc73thCkgjvPmUkCkGStnE5DzV25i1oIfsG7++DSA/cd+gz6dW+HNymXEIyAORJyGj7enuPtq7px+EGbc1KtVWRrgdtYKBcTCAaGAWAjQDosv2eGJB09l6NciAQUDOP3KDofIabpkqYDcu5YxPguVsr8de1bv9sCth/K0MQupkoIGlV+Z5+g0o/n6B6GAOM5AU0CkGStnE5Ajpy6h5/BZuBC2Jg1gvfeHYOqYXgipUxVrNv+B2Ys3oX+31qhcviS2hB7A2YvX8dfP86UBbmetUEAsHBAKiIUA7bA4BcQOB8VJu2SJgMTFACsnZTyHqNcUd3j72RcsIQNy4IwbomNlqFJChWqlUpgBec+224/aVwQ4Xm8oINKMmSsKyN/Hzom7sQrXoydRaPDhMPEg7KDC+aSBbketUEAsHAxjBORFnAzPYtL/AujprkH+XK43BcFC1JIVp4BIhtrlG7JEQBJigd9XJ+P+jdQsSMESMvyvhxs8fewPqzYL0r1JokvKhzAizIDYX1xm1SMKiDRj5eoCIlAObt4f08b2RNOQmtJAt6NWKCAWDoYxAnL4shI7j6WffBuUV42eTRMtbJnFbUWAAmIrsqw3MwFLBERb1/wRqVmQwd+447/zVe0OtLMJyK2HigzTyvx9NahWQv85LtrBoIDYXVhm2SEKiDRj5WwCcuLsP+g2dMZrp2C9mgG5F/kETTqMEo+HCK5aThrodtQKBcTCwTBGQC7+q8C+00o8iZbD20ODSsVUaFHTsedAJyTJ8PB5xvnmQU6ysJQCYuFLweJGE6CAGI3Krm48cEaJsLOm/VGJAmJXQ/jazlBApBkrZxOQuPgEMaOxcMYwVHmjJHbuP4rp364Tf9auAfll199Y+tUoJCYlYeGanxF+9Bx2b/oGXp7u0kC3o1YoIBYOhjECIjRx7qYC2/52R8ViKrSrl3HetoVdyJbiwl8AV+/O+MJM6RqfLX2xdqMUEGsTtX59D6PkuHg7fVqjtwdQq9zr/wJt/V5YXuOjKDkWhnpALgP8vPVveBATL4NaDfRplojCgbpTN5kBsXwcTK1B+P7bf1qJ24/kEDLa1UqrmAExFaId308BkWZwnE1ABGqL1vwsioVwCdIRFnEai74cjvq1q6QtQtfSLVwgELMn9kflCiWlAW5nrVBALBwQVxWQyOdy7DjqJv4PWLicaVoZBcTCl0KC4mdvKvHj3+l/gQ7IocbQ9xxvWqM2A2IMst7NElGEAmIMKknu0WZBQiono0EVw/JrSgYkZdtJpOy/nPYcyrdKQNntLUmey9kambTOK8Mj9W2RiEIBr1+DSQGRJgqkEpAc3kDFYoafKToOuHDL8oMIhQOsU1JU8M+RcUGesAuWMAVr8ZfDERMbL27D68oXBcTC0XdVAdFi0365O0v2Q3guCoiFL4UExYUMSPgFBc7cUMLfRyOe1+LIGRBhY4pyRfT/UnTlrhzxiTJmQCSIK1OasKWAJM3dC9XWE2ndUTR/A+4TW5rSPd77HwEKiP2GglQCYiqBMoWA0e1MLWX4fq2AaHfBMlzCue+ggFg4vlkJyPGrSpy9kb7VYmwi0taABPqnT7Xw91Xjg7qOux6EAmJhALG42QRuPpRjzW4PFMunRo8mjpf9EB6ca0DMHv5sL2hLAdHcfY7kDUeg+uUMFI3Kw63325AF5c72Z3bUDnyzzRMv4mUY8UEC/LOY6vjqszEDIs1I21pA7jwGNoWZ/ixFAoEOIaaXM1Tinxt38fDxc9SrVcnQrS7xOQXEwmHOSkB2n1Qi/EL6FJGsmnHUqSPa56GAWBhALG42AQpIKjquATE7hEwqeOqGMsOJ7jcj5eJOWIIAF8+fnr3KakcsU6ZgCR1LWX8EyYvCoOxUE26DG5jUV96ckQAFxD4jwtYCYp9PzV5pCVBALIwFVxIQfTtfrdrtIRLsmekv0I68I5YzTMHafUKJu09SM3BPXsgQm5C+Y5mflwa5/VKzcCUKqCHMYXfEiwJivwKSedpLVvHlSKeir9rlkbbm7XXvS1br4Sgg0nzLxCYAX23NuO4jq5Y7hiShXBGVzsfMgEgzVhQQaTjbaysUEAtHJisB2XXCDREXlQZrD/DTYOj7CQbvs4cb9O18lVW/HHlNiDMIyLq97rj2wPBpy28UVaF9fcfclY0CQgGR8ntRKyD5cqrh6aG7Y1lCogzC2iQKiJSjotsWBSR7+ZvSOgXEFFrOdy8FxMIxNSQgJfOrUCSv7uLSuETg6BU3OKKAKOWAj5f+LUOjY1P/0k4BsTCwLCyuFZCSBdR6t3eNfimD8As8BcRC0BYWd9Y1INoMiJDh0HcJU5duRcrhiBmQqiVVyOmj+50eFSvH6esKCoiF74SlxbUC4qYA6r6hP7t77pYST1/IwAyIpbQtK08BsYyfo5emgFg4gq4oIMKuQ9VK6aatBZRhZ1KzPhQQCwPLwuLf7/XA9QdyVC6ekjbd6tUqH0XLcPG2Em8EqdD+HWZALMRtdnEKSAoaWDgFMKHTSmhuPUkbA7fPW0LZ7A2zxySrgtoMCAXE6mitWiEFxKo4bVqZrQUkPk6DyH9fv+Wyvgf08AIKBhmeQWBTOC5QOQXEwkGmgGQESAGxMKCsVJwCYiWQNq6GAkIBySrEuAjdvJePAmIet+woZWsBuXEpBctnxpr8aMXLKtB3vK/J5VjANAIUENN46dxNAaGAWBhCNilOAbEJVqtXSgGxXECEQUkcuhnq47fgMa895DWLW32chAqZAbEJVqtXSgGxOlKbVSiVgCiUGvj5px6a/LorOVmD2BeAvQvIrrCjqFmtPHL56x5kmJyigkqlgqeHu6HHNenzJ8+icfLcVTSpX8Okcq+7mQJiIUoKCAXEwhCySXEKiE2wWr1SCggFJKugYgbEvNeNAmIet+woJZWA5AyQ4c16hn8hf/5EjZN/J9u9gLwR0h3rF0xAtYqldYZtwart2Pf3CWxfNc2qQ3r01GX0GD4TF8LWWK1eCoiFKCkgji8gxm4Z2qpWEmqU0b/2xcIwsnpxCojVkdqkQgoIBYQCYt1XiwJiXZ62rI0CYh7d1wnIoydRiHkZi5LFCplXeRalKCBWxWmdyiggFBDrRJJ1a6GAWJenrWqjgFBAKCDWfbsoINblacvanFFATp77B3OXbcPla/+icIE86PphE7Rt8Q6u376P6fPW4cipSygZVBCDe7ZNm84UujsCBw+fgZ+vN37bcwgF8ubG5FHdcej4BWz6ZT/y5PbH4B5t0ahedXE4BAER6j1y8iKE09VbNamDSSO6w8vTHb/vO4wTZ//B58O74drNexg3YxlaNq6NH7bvE8v26tgC7VunHmyq0Wiw5dcDWLt1F2Jexon97NimEfIH5hY/+37bbqzd8od4enuZEoXFtpgBseUbYWLdFBDnEZD6lZIhSz+vL+3BrtxV4MEzOZgBMfHlsPHtPAckFbA9noQu9Ta8XANi+csmHDQb+Tx9nrxMrkFQoOk7CFneE8tqoIBYxk/K0s4mIP/ee4jmnceKv8i3bVEPt+5E4vSFaxg/tAuadx6DN8oUw8ftm+HoqUtYuOZnbFs+BeVLB2HN5j8we/EmUQ7q1qyEDT/twYpGgAAAACAASURBVL6/TqJpSE188L93cOLsFWwNDcOf27+DTCYTBaRi2eLo2bEFhLUZ85ZvE4VDEJHvt+5CWMRprJo7Fucu3UCHAV+gYd1qonTcuf8Y079dh4jQhfD38xFlZfLXazBlVA8UL5ofi7//Bf5+vpg6pid27DuC0VMXY1D39/FO7SrYc/A4Vmz8nQIi5QtiqC0KCAXEUIxkx+fMgGQHddPbZAaEGRB7yYDcjFRgzZ70efIebhqM75D1IbkP72jw9y/p57x4esvwv56GD981/S0xrQQFxDRe2Xm3swmIsP5i86/700RByzb82Hn0Hf019m6ZI2Y3hKv1x+NRr1ZljB7YQRSQv4+dw4qvR4ufae/XZhuiX8SiTutB2LF+FoIK5xMF5NU1IDO+W4/YuARMH9dbr4CcP7BaFBfhqvf+EHwxpica1KmGLoOni/V1+aCx+Nmlq7fx5fyNOPTbQvQd9TXyBubCzPF9xc84BSs735Qs2qaAUEDsMCxBAbHHUdHtEwWEAmIvAiJkeX897Ib7T+UQDvErll+FLg2zPiPo3ysa/LI0/aA/Lx+g91TDC31t/WZSQGxNWLf+D99rikPhf6V9MHnaV+jTf7DBjjibgIydvlR85lkT+mV49p92/Im5y7bir5/np/37pK9Xi9Oe5kwepCMgwjSurkNmpGUbEpOSUb1JH/y0cirKliyiIyDCNK3Vm3Zi1w+zDQpIiy5jxelcLRrVEmXE28sTgQE5M/R33heD0abnZ/ik94f4sGV9CojBSM6mGyggFJBsCr3XNksBscdRoYBoCVj7JHROwbJOvD+OlmHBr57Ik0ODIe9lnf0QWkuMA66fV2PfphTkyC1Dky5KFCimZw6rdbpmdC0UEKNRWe1GCkgqyq+XbMafh87g17UzMrA9EHEKg8d/i4hfF8I/h4/4mZB9KF+6KCZ80lWPgFxF1yHTjRaQKXPWius91s0fb5KAfNhnEt5rWldcT5L5GjR+HsqXCsLgnm0oIFZ7U6xcEQWEAmLlkLJKdRQQq2C0eSXMgDADklWQZcc2vKYIiNDvpw802Dg7Gbnzy9B5jJvN3xdjGqCAGEPJ+vf0790VoT//iMXLv0frNh8a1YCzZUAOn7iIXiO/+m89Rl08ePQUEcfOi4vAm3QYjY7vN0Tvzi1x/PRlDPnsOyz6cjjq165iloAIU6NaNHpLXE8yZtoS9OncEt3aNTVJQJatD8W6bbvFflQoUwz3Ip9g229hGNGvPTZu3ycuQP9yfF8EBvhjwert4gJ5LkI3KrSluYkCQgGRJtJMa4UCYhqv7LqbAkIBoYBY9+2jgFiXp7G1UUBSSa3Z8gdmL9qUhq1/t9YY0rMtDh46g1FfLEZcfGpmUfvv2jKCqCybPUr8TDjw79UMSFJSMqplmoIlTJ3S1iUIztTRPeHu7iYKxYHwU6mL0C/fRIf+U/DqGhBhCpbQn+YNa0God+7ybaK0aK/gquWwZt44cXF7n1GzxZ2vhKtucEVxbQoFxNg3QoL7KCAUEAnCzOQmKCAmI8uWAhQQCkh2CsjpGwpsDzdu3cbETvFQKjL2lhmQbPnasMtG7VlAfP1lKFvJcIYu5oUG/5y1/CBClUqNp89fIGcOH1EKtJfw75GPnyF3zhzilrmWXMI2uQ+fPIenuzty+vtaUhVSVCo8ffYCOfx8MvRLaCPy0TPkyuln9ZPVhQ7zIEKLhg2ggFBALAwhmxSngNgEq9UrpYBQQCgg1n2tmAGxLk9ja7NnATH2GbT3FS+rQN/xlv1Sb2qbrng/BcTCUaeAUEAsDCGbFKeA2ASr1SulgFBA7EFA8uVUo3xRld6uHDznBo0GYAbE6q+/U1VojwJy/7YKv22IN5lzgSAFWnX2MrkcC5hGwOUERNgr+cXLOOTLkwtyefqOHWq1Bo+ePhdPnFQqMuWZAXG7NCFNlcvfLwNhCggFxLRXTpq7KSDScLa0FQoIBYQCYulblLE8MyDW5WlsbfYoIMb2nfdlDwGXERBhAdCshRtx++5DkfT2VdPEo+WFK/PioEkju6N9qxDxM2GRz9hpS7E//JT4c+UKJTF/2lBRVISLAkIByZ5X9/WtOqOARMfK8Pxl+knNkc9l2HnMDcJfb1vUTD8QzZFOcKaAUEAoINb9BqWAWJensbVRQIwlxfu0BFxCQIRj6YU9jYVtyoQ9j4UshoeHu7jYJj4hCe+0GSruddy57bviEfafTJwvHuhSuECgePT81tAwrJs/Qbx/wLi5KF60gHhUPQVE90UKO5N6Eu6UrqanPbPrtZy0LjXVWr9SMv47LDRDV67cVUA4pKtVrSTUKKN/mkJ29T2rdp1RQMIvumH3CcMnLRs6wdmexooCQgGhgFj3jaSAWJensbVRQIwlxftcRkCEVfxte01E2VJF046Uf3X4hezHwE/n4tTu5Wm7FQjblAky0rltYwgHtTQNCRblRbh2hR3FiMmL0rY1YwaEGRB7/DpxZgERBEPfBiIaAC9iZaCAZH9EaqU+pEp6ZurVXvEgQt1pvplHTYpzQLS7YHENSEb6KycnI+6FBj0nucHHP/sPV8z+N9pwDygghhnxjowEnD4D8iwqRjxuvmHdakhOSUFsXCJqv1kBPTu2ELcV2xIahjWbd2LH+llpZIZM+BbFihTAyP7tEdy8P6aN7SVKiHBd/OcW2vWdjIjQhfD38+EUrExvFDMg9vEV45wCosTuE24okkeNkgV1M1HJKiD8ghs83YBPOzhGBo4ZEGZAmAGx7ncmMyDW5WlsbfYoIOoXCUi6HGnsI6TdJ/fzhHv5/CaXYwHTCDi9gFy6elvMYrRrGYI6wRXxIiYWsxb+gP81eguTR3UXp1j9ceAoti2fkkZOOCzG19sLk0Z+jIoNeqSdVinccP3WPbTuPgF7N3+DAvkCEBOv/y98vx6WI+yMHGUKaVAsv/C32YyX8CUZfkGOQH/hlyX9dZg2lLa/+/oDGRb+qkAuXw1qltN9JqEHu46nztGf088xnkno64ilqdN6GldX652CdeG2DPeeyNCungq1K+h/btvTN62Fpb8rcOWuDNVLq5Enh27ZyOfA2RtyVCmhwceNHWNa2YEzcoQelqNYXg3KFNEdh+QUQLjHyx2Y3sMx4u/BM2D2ViV8PYE6b6j1DvKRy3JExwKfvK9CUD7d557RP1Ys9+liH73xa1rkWOdu7TuVO+OeHWmVxycB8YlA0xpqNH1T/3Ob0pOofhuQdOQmci7uBPfaJUwpavS9wnef8B0YXFYjfgdmvp6/lOHYFRlKFtBgUGvdd+rw7mTs/ykJtd51Q6MPDZ8BELf6EF5+uw/eH78F3+HvGt1PU248/o8MGw8oUCC3BpWK6/9u23NSLu6C9VXvFJ1zQB7fU2P51HjkKShH38/tY9egl/HA598r4aYAGlTVH1unrsnxOBro2VSFisV0n/vbsXGIjdZg6Exv+OZkBsSYmOretRN++nErVn+/AR982N6YIvDzMjyl1qiKsrgp/sgt3O+2xuQqPIODUGh9D5PLsYBpBFxGQP76eT5y50z9v+FPO/7El/M34uiOxdj620GDGZDp43qjSf0aYtnMGZCYuGS9xH89rEDYWUFA1K8REEWqgHykvw7ThtL2d19/IMfC0P8EpGwWAnLiPwHp6xjPJFAbsSz1oKDG1VVZCIg8XUDKW/7Lku1HClj6uxJX7mkFRHeshAXcaQLyrmP8si4KyBHFfwKiOw6pAqJIFZDujhF/D57JMHubVkD0i+CRy4pUAXkvRb+ADIhLFZBF3vYjIP+9U4ZiXZCPpm9aLsBR/TemCsiijjYUECWuRwoCon6NgMhRMr8gILrvlCgg25NTBeQDw4eixa0RBGQ/vLsJAtLIEEqzPj/+jxwbw7QCov+7bc9JRaqA9ErWIyAaLJ8mCIgMfSfakYCsc/tPQPTHVqqAyNCzSUoWAhKP2BeCgHhBOMSOl2EC3bsJArINq9cKAtLOcAEAft6G3wOjKjIgIDJ3BeR5jDjXIykFqiexsJaACLurCtP2hT9+CzNmeGUk4PQCEh0TizqtBuGHRRPFHayEa8uvBzBlzlqc278afx05K64BOb1nBdzcUm28acfR6NauSdoakGYNaqJ3p/+Jn3ENiDv8fTSoVkr/FzunYNnHVwynYHEKVnZGonYNSNWS+r8nhE0dHj6XQVgj0qCy5bKYOHQz1MdvwWNee8hrFrfJo6/a5YHbj+QQnimnj+4v61Gxcpy+rkBQXjV6Nk3U6cPJAyqEh6pQrb4Cb7/HNSA2GSQAnIJlK7Kvr9cep2BpMyCKgv7I0baqQTAp96IRs/201QQkOTkFVRv3FmfYlC8dZLB9V7vB6QVEGND+Y7+BYKLzvhiMJ89eYPQXi8XpU8LPcfGJCG7eD2MHdUQnPbtgLd/wG7b9dlDcBcvbywP9x87hLlgUELv/nqCAUECyM0i5CJ0Ckl3xRwHJHvIUEF3uFJDXx6JLCMjdB48x7PMFENaDCFetauXx1cT+aWd5CGd8CAvPtddnw7qi4/upKW/h4EJhTcifh8+IP1csWxzzp3+CvHlyij9zF6yMAcYMSPZ8+WdulQJCAcnOSKSAUECyK/4oINlDngKSyv3Q8Qv4cv4GXL99X5x1c/bi9bQMiDAj56uFP2D3wePw8/XChy1D0LdLS8ggw8effIkR/dqjeqXSuPnvA4ybvgzLvh4lTt0SZt78efgshOUAobsjcPDwGfHff90dgXKliorHSAi/1zra5RICoh2UR0+ioFQq0taCvDpYKpUakY+fIW9AzrSpWK9+LgSOYLPaAwi1n1FAKCD2+NJTQCgg2RmXziwg+XOpxXVGmS9hYX3kczmnYGVn4HEKVrbRp4AAd+4/QrNOY8Tz5gS5iHz0DKOnLk4TkDFTl+DytX9F0XgW9UJcizysz4fisQ89h89CcLVyGNDtPaz8YQfmLN0iHh3RqkkdfDZrJXL4emPMoI5Ys/kPzF68CT06NMfbNSth5/4juHDlVoaNlLItCExs2KUExEQ2Rt1OAaGAGBUoEt9EAaGASBxyGZpzZgExxJVrQAwRsu3nzIDYlm9WtVNAgKXrQrH+x934c/t3kMlk4h+ttWtAggrnE491mD1xAFo0qiVinLlgI46cvIjtq6ZBmO5/5NQlrPh6ND7qNwV5AvyhUMjx3dSh4rrkT4d0RkidqqKA/H3snHifcAnZkpbdPkXErwvhn8OxFrpTQCx8VykgFBALQ8gmxSkgFBCbBJaRlTqzgAiH9nl66O4sl5Aow8MoZkCMDBGb3UYBsRna11ZMAYGYqUhKShan+AvXqwIinDsniIJw5pwgI8L1255D4oZIx3YuwZmL19Fp4FT8sfErtO31OX5ePQ1NOowSfxayKtqz5zILiDCzp8GHw7Bv6xzkD8ydPYNvZqsUEDPBaYtRQCggFoaQTYpTQCggNgksIyt1ZgHhLljpQfD0gQYbZycjd34ZOo+x7ZaqRoYed8EyFpSV76OAAGu37sKeg8exfsEEHQEpmC8P6rQehIUzhomZDOFasGo7duw/LEpJcooKVd/tJU7f8vT0wOfDu6HL4OkoXDAQ127eS5tiRQGxcuA6cnUUEAqIPcbvur3uuPZAgaz+WhubIMOTaDkqFFXho/pJ9vgIOn0Kv8iT0IsE6m7/On9E6vgN/sbdbs4BoYBwEXp2falInQFJGLgxw6N6ftYCKJi6SY0rXRQQiOs7Puj9uTjNqma1cmKGQ1ivod2GVxAKXx9PTBrRHc+jYzB80kI0qR+Mkf1TD24cMG6uuOGRML2qdo03sG7bbnGalnAMxPC+qWerUEBc6a0y8KwUEAqIPb4O2gyIob69EaRC+3coIIY42erzh1EyLAr1hI+HBsFl9R8IeeKaEjFxMvRulggKiP6R4Dkg5kXo6RsKbA93F/9QUb6o/jNbDp5zEw8inNgpXucgQmZAgPg6szIKyLqekJUMNG9AHLgUBQTicQ9jpi0RF4YLl5DpCIs4jR9XfCHuViWs1/hk4nxxhyzt58JCcz9fb/FnQTi+W/kTIn5dIG6GdC/yiTgNa8mskahXq1KqgGz5AxHHzmPZ7FHiz4+fRiHkg2HYv3Uu8gXmcqgI4hQsC4eLAkIBsTCEbFKcGRBOwbJJYBlZKTMgzIAYGSpWv03qDIj65B0kjtkGxCXBfWZbKIKDoHebNKs/qX1VaM8CIg/whe87qQdRv+5KeRKLuL+uWXwQ4ZNn0aJAZHX6ubBuw8PDzeVPR6eAGIpIA59TQCggFoaQTYpzDQgFxCaBZWSlFBAKiJGhYvXbpBYQ4QHim38HRMfDa8cQIGfqX7Nd7bJnATF1LDyDg1BofQ9Ti/F+EwlQQEwElvl2CggFxMIQsklxCggFxCaBZWSlFBAKiJGhYvXbKCBWR2pUhfYoIEmXIvF4+k6j+v/qTR7l8yPPhOYml2MB0whQQEzjpXM3BYQCYmEI2aQ4BYQCYpPAMrJSCggFxMhQsfptFBCrIzWqQnsUEKM6zpuyjQAFxEL0FBAKiIUhZJPiFBAKiE0Cy8hKKSAUECNDxeq3UUCsjtSoCikgRmHiTa8QoIBYGA62EJCXUUD0k/SDrjy8ZchT0MKOWqH4rYcKrN7tDn8fDaqV0r9jStgZpdjSlK6O8Qug0FftL0v1KyXr3cb0yl0FHjyTo1WtJNQoo/+5rYDXqlVQQBwj/rgLVgoaVE62OPa5C5Z5CLkLVhLKFdH9Tl85ORlxLzToOckNPv4yg3BdcQ3I27Uq4+b1awbZDBg8HJ9Nnq73voIBXgbL8wbnJUABsXBsbSEgJw+oER6aviVn4dIytBmQ/Yc8UUAoIBa+LhYVl/IcEFXoWSR9mT53WF4qLzy+t/6iRAoIBSSrlyJl/REkLwqDslNNuA1uYNG7k1VhCggFxNzAooCYS47ltAQoIBbGgi0E5OppNY78kYLnjwBvX6DMmwrUe09hYU8tL+7sAiJkdvRd8YlAUooMrd9Kxpul9Z/VYDld69bADIhlGRAKiGXxyClYnIJlWQSZX5pTsMxnZ0pJrYD06NUPuXIH6BQ9dvQQ/jp4ANmZAYmKisKZM2dMeSzxXn9/f1StmnpaOS/bEaCAWMjWFgIidOnycTX2bExB2TflaNI5dVpTdl/OLiCG+HIKliFCtv1cygyI8CSqQzeQNHIr5LWKw2Nu6km11r6YAWEGJKuYYgbEvLeNAmIeN1NLOYKAhIWFoUED07OH9evXh1CWl20JUEAs5EsByQjQkdeAVCmh0rsG5M4jGZ7GyJkBsfBdsbQ4BYQnoWcVQ1wDYt7bxSlYnIJlXuQAjiQgHh4eyJ8/v8FHTUhIwMOHD2GvAiKctL4r7CjqBFd0ikMMKSAGQ/L1N1BAnEdAuAjdwpfBxsUpIBQQCoh1XzIKCAXE3IhyJAEJCgpC9+7dDT7qrVu3sHbtWrsVkOTkFFRt3Bvblk9B+dJBBp/H3m+ggFg4QhQQCoiFIWST4lwDYtkaEGFQOAXL/NDkGhCuATE/eiwrGZcow6wtnmIlWa3ri02QIUUFdGqQhLKFuQuWOcQpIOZQs6wMBcQyfk5XmgJCAbHHoKaAZBSQpw+Aa2fSNxDw9pOjUl35a4eOAmJ+ZFNAKCDmR49lJbVrQIyppWMIMyDGcNJ3DwVEl8q1m/cwYeYKjBvSCeu27cajJ1FYv2ACxk5fiohj5/EsKgYlgwpiUI82aBoSLFYwc8FGKJUKXL91H8fPXEGDOlUxpFdbFCmYV/z80PEL+HL+Bly/fR+VK5TE2YvX0zIg0TGx+GrhD9h98Dj8fL3wYcsQ9O3SEkqFAqG7I3Dw8Bn4+Xrjtz2HUCBvbkwe1V2sb9Mv+5Entz8G92iLRvWqmxsCFpdjBsRChBQQCoiFIWST4hSQjAJy5YQGuzeknzeRKz/QZYw7BcQm0Zd+tk5IFf27xt16KMetSDmEz3kOiP5B4CJ084JTmwFRKIBKxfSf23QjUo4XsTJmQMxDLJaigOjCO3fpBjoM+AL5AnPhgxbvwNPTA706tsCGn/agVPHCCMiZA2GHTmPusq2I+HUh/HP4YMC4uaJ4DOvzgXjPnCVbUKt6eYzo1x537j9Cs05j8F7TuqJcRD56htFTF6cJyJipS3D52r/ivc+iXuDL+RsxrM+H6Nz2XazZ/AdmL94ktl+3ZiWxD/v+OommITXxwf/ewYmzV7A1NAx/bv8OMpnhs24sCJUsi1JALKRKAaGAWBhCNilOAdHNgBzfn4x/TmiQI7cM1RsomAGxSeSlVsoMiGNkQM7eUOLHcDe4KzXw8tAfENGxqb+c6Dtc9ukDDTbOTkbu/DJ0HpP9Z1UJ/eQuWDZ8sV+pmgKStYAc3bEEPt6p0wCFS6VS48r1f0VZELIi81f9hM1LJ6Fi2eKigFSvVBp9OrcU7/3x9z+x/sfd2L5qGpauCxX/WysJr07BCiqcD8HN+2P2xAFo0aiWWFbIphw5eVEsKwjI38fOYcXXo8XPwo+dR9/RX+NC2Brx5+gXsajTehB2rJ8Foa7suCggFlJ3RQExBhlPQjeGku3uoYDorgH594oavyxNQZEycrzf3/DW1pyCZX58UkAcQ0C0i9CNGemJneKhzHQcFQUklZwrn4Ruz+eAaLfhlWoRujYDcv7A6rSsQmxcAvqPnSPKR8O3q6FA3gAs3/Abflg0UZxSlVlAhF2u5izdil0/zMZns1YiKSkZX03sL8bZqwLi6eGOlt0+zSAQwlSrKXPW4tjOJToCcvLcP+g6ZEaagCQmJaN6kz74aeVUlC1ZxJivAKvfQwGxECkFRD9ACoiFgWVhcQoIBcTCELKoOAXEMQREmwHJ5atGUD79B7Gevp5qHcyAZP1KUEDs8yBCexAQYdrT0InfISJ0YdrWuW+EdDdKQNZu3YU9B4+L60gyC0jBfHnEDMbCGcMQUif10MQFq7Zjx/7DopRkzoCcPHcVXYdMp4BY9H82OyvsigIi7CxSrZT+ubWOfA4It+G1s5crU3e02/Aa6qWnG/BpBwqIIU62/JwC4hgCwm14uQjd3O8BTsHSJacvA3L4xEX0GvmVmGnIH5gbv+87jOnfrjNKQISsyQe9PxenWdWsVk5cTC6s69Buw9tl8HT4+nhi0ojueB4dg+GTFqJJ/WCM7N+eAmJuYDtSOQpIxtGigNhH9DpzBsQQYQqIIUK2/1wrIMXyqfU2FhUrQ9RLGRehv2YouAjdvDjlGhDzuJlaigKiR0Au30SH/lPw6hQs4fDAEZMXYs+fx8UCDetWw/7wU9i0+HNUKl9CnIL1ZuUy6N3pf+Lnu8KOYc7SLeIULKHsmGlLsHP/EfEzIdMRFnEaP674AuVKFcXNfx/gk4nzxR2ytJ/PHN9X3PlqzZY/xJ23ls0eJX6WOQMiTO2qxilYpoa9fd1PAaGA2FdEpvbGmQWkSB41ShbUzcAlq4DwC26ggGR/RGoFxFBPHHEXLF9Pjc5aCOE5hXMlXibIEJRXjZ5NmQExNPa2+pwCYiuyGet1JAERTkFv2rSpQTCRkZHYtWuXTQ4ifPIsGgqFHLn8/Qz2I/MNQlk3N2WWp58LC9s9PNwc7nR0rgExORQyFqCAUEAsDCGbFKeAcAqWTQLLyEoPnDVuR6Ri+VQonkWWxMimxNsSh26G+vgteMxrD3nN4qYUNfreVbs8cPvR68+OESqjgBiN1CY3UkBsglWnUkcSEFOJ1K9fH8L6EV62JUABsZAvBYQCYmEI2aQ4BYQCYpPAstNKpRCQyOdyJCSl75d/8pocZ24oUaVECqqXSp9q5umuQf5culPPTh5QITxUhWr1FXj7vUzbSenhyilY5gUbBcQ8bqaWcgQBOX36NIYNG2bqo6Fq1aqYN2+eyeVYwDQCFBDTeOncTQGhgFgYQjYpTgGhgNgksOy0UikEJPOjHzijRNhZN4RUTkaDLA5cfLUMBUSa4KGASMPZEQREGhJsxVwCFBBzyf1XjgJCAbEwhGxSnAJCAbFJYNlppRQQ8waGu2BxFyzzIscxTkI399lYThoCFJD/OAu7DTx6+hx5cvtDqdBNj8e8jEOKSqWzgIgCQgGR5lU1rRUKiHMKSICnGufCUzIEw9HdqdN9ghvLIUufIYRKdZTwzmFa3Djq3RQQ80aOAkIBMS9yKCDmcmO5dAIuISCzFv6A77fuyjDu1SqWTjvc5eChMxj1xWLExSeI90wa2R3tW4WI/y3829hpS8Vt04RLOLly/rShoqgIFwWEAmKPXygUEOcUEM8kFTZ9k2xUyH00wg15C79iJEaVcsybKCDmjRsFhAJiXuRQQMzlxnIuJiAzF2zEnfuPMGZgx7QnF7YsEw6FiU9IwjtthmJwzzbo3PZdcY9lYV9lYQ/mwgUCsWLj79gaGoZ18yfAy9Nd3LO5eNECmDqmJwVEz5vEc0Ds4+uFAuLcAqJ0B/IW1h9rj+8CyUkABcS27yLXgABPH2iwcXYycueXofMY43Y+09yPBvw8IPPztMkAcQ2ITbDqVMo1INJwduZWXCIDIghI1IuXEA5oyXwJ2Y+Bn87Fqd3L4e6e+gXaostYUUY6t22MD/tMQtOQYPTp3FL8bFfYUYyYvCjtoBlmQJgBsccvCAqIkwpIYgo2zUmBt58MFWvrz26cP6RBXIwGHw1XIm8Rw9vG2mP8mtonZkBMJZZ6v5QZENXJf5E8bjs0L1NnGiiqFYXbzDZWFxEKiHmxYGopCoipxHh/ZgIuIyC7Dx7DW9UriGs4Gr5dXTx5Uri2hIZhzead2LF+VhqbIRO+RbEiBcTj7IOb98e0sb1ECRGui//cQru+kxERulA89IUCQgGxx68VCggFhAJi2zeTGRDTMiAJjedBE5vxgEZF84pwn5h6ArS1LgqItUi+vh4KiDScnbkVlxCQ0N0RuHU3Eh7ubjh/5Sb2/XUScyYPRNOQmuIUqz8OHMW25VPSxllYD+Lr7YVJIz9GxQY96hSMJgAAIABJREFUsOjL4ahfu4r4+fVb99C6+wTs3fwNCuQLQHyi7onMwn0/H5Jj/2kZyhbSoHgBjU4MCX8E+vu8HHn9gc866dZx9lAKfl6dgEpvKdGmp21S1aYG9rX7Mnz3ixy5fYFa5XWfSahv57HUv8p+N0A/F1PblOL+oYtTNx1o+qY6wyJebdvnb8lw94kMH9VXo24F/c8tRT9NaWNRqByX78pQo7QaeVKXK2W4HjwHzlyXo2pJDXo20T2zwJS2pLp332kZfjkkR7F8GpQrojsOySnAvtNyeLkDs3rpxt/1iypsmBePEuUV6DLcy2C3E/6+jmcDN8KjTgkELOms/34Ll1jcfwbM3KSAryfwdiX943DoohzRscCItip4JKmwfGo8fHLI8GZ9pd4+nfwzBS+jNej9mRcKBhk+b8IgCAe44Wmf9Ug8fBMBSzuL42XT67/Q23FMhj+Oy9Gshhotgg1/L0TsSsLeH5NQu7E7GrdzN9jFl6si8GLePvh2r40cI941eL85Nxy9IsP6/XIUzK1B5RL6n2HXCTk0GmBOX5XOCfCP7qmxZEocAgvKMWCyd5ZdSL4cicftl+t87l4jCHlWdTOn61mWiYkHJqxRwF0BNKym/50SznB5FAX0aaZGpeK6zz1ndKz4Dg3/ygd+OQ2/5JHvfA11VDzyHxwJea6sOVj1QbO5ssoVy+Patavo138gAgICdHpz6FAEDuzfh+EjRmH6jJl6e+vl4RrfT9k8VHbbvEsISGb642YsQ1R0DJbMGmlUBmT6uN5oUr+GWE3mDMizmIx/0dG29ftRJf48p0DpgmoE6TnpV/grzaFLSgTm0GBUuySdALlwVIUd3yejQrAC//vYuLm1to6yG5FyLP3dDTl9NKhRVv8X+96TqV8os3rp52LrPppT/9iVHmKxRlVT9ArIxX8VuP9UhrZ1U1CrnGOI1Yo/3HD1nhzVSqoQkEP3f7APo2Q4d1OBSsXV6NLQuEXN5rC1ZpmD5xTYcVQpnjRdupBu/CWrgINnlfB0B6Z01Y2/W5fU2LowCUHl5Gg/2PAvgMnhN/Dyk81Q1i4Ov/kd9D+K4d87X4sg8rkMc7e7w8cTqF0+4+5W2oJH/1HgRawMg1omwSNRhe+/SoKPnwxV3tY/vepMuBqxLzToOtod+Yu6xhSsmIE/IOXYLfgt6ABlLduchJ42kP/9PrrnpAJ7TynxbrUUNK5u+Hvh6N4UHPw5BcENlQhpq18eXw2WhLWHET//ADy71oLXJw2t+Sql1XXimhxbDrqhQC4N3iim/xn2nVaKAjK9e6KOgDy5r8HqGYkIKCBDzwmp36P6Ls2LBEQ1nKvzkbJ6Ufgty0LuzXxi4Y97Uzd4wE0B1K+s/50Spp49iZah27vJeCNI97tk0fhE8R0aMN0Dvv6GBSSq0TxoouORc+8nkOV0DQGpWa0irl+/ht59+yN3bl0BOXL4EA6G7ceQT0Zg8tQZekczt1/WMWPm8LOYAxFwSQGZt3wbTpz9B+vmj4d2DcjpPSvg5pb6P4WmHUejW7smaWtAmjWoid6dUtPEXAPiDn8fDaqV0v8/Ky5Ct4+3n1OwOAWLU7Bs+y5yCpZpU7ASB22E+tSdDIPiPqEFFP+rZNWB4hQsq+LMsjJOwZKGszO3YnMBefw0CoEBOfUyPHPxOsqUKCLuLmXLa+6yrWjdpA6KFs6PK9f/RY9hs0Sh6Ne1FeLiExHcvB/GDuqITnp2wVq+4Tds++2guAuWt5cH+o+dw12wKCC2DFer1E0BoYBQQKzyKmVZCQXENAHRxCQged4+aCKjRaaKemWg7JA6s8CaFwXEmjSzrosCIg1nZ27F5gIyYvJCtGn+DurVyvhXjr+OnEP/sd+kLea2JeSP+k0R135or/ebvY2Jw7vB0yNVfIQzPoSF59rrs2Fd0fH9RuKPsXEJ4hkhfx4+I/5csWxxzJ/+CfLmSZUqLkLPOHLMgNgyko2vmwJCAdERkLgkJG88kiGI3DrXgrhoxsEv7oJl3gBKuQuWeT00vRQFxHRm5pSggJhDjWVeJWBzAflu5Y9Yui4Uy2aPQt3gimLbO/cfEX+pF35e+OVwuCltvxBJOMn8eXQMAgNy6c24qFRqRD5+hrwBOdOmYr0KKjomFsnJKWkHEGo/o4C4toCs+DwZ8S/TFwK06q1EsQrZP++eAhKPl1FA9JP0sXl4R4Pw0BTxcL63W6fPwZcrgQLFdOd5qw7dQNLIrZDXKg6Pue1t8n8OYS3OolDjNpno3SwRnpZsw/vkJeJbL8zwHJ6/D4HMCRbNUkDMC08KSOpBhPeuZVzMtWNtMhJigRbdlfD0Tv9uENa6eProso5v/h0QHQ+vHUMAF1kDQgEx751jqXQCNhcQtVqDL+evx8bt+0QJuffgMabMWYvmDWthxrjeaWdvOOqgUEAoIBQQad7e8ItK7D7hhiJ51ChZUHcNkrAIPfyCGzzdgE87xOPkAbUoHIYuD2+g7zTdLIDTCYiQAdlwBCmrI0Qkyp51YI8ZkEvH1Ih5nj5qhUrIUKjU6xcCU0AMRbn+zykgSSjqr8LKybobwegj1rqvG4LK6cYiBUR3Efqxo4fw18EDGDB4OD6bPF1vABYMMLwboXmRzVKOQMDmAiJA0Gg0+HrxZqzZ8ofIpFObRhg3uDMUiuz/S7Glg0QBcW0BEZ5+49fJeHpfgw4jlAgsbB8xzQxIuoC4e2rg4an7S4PwN08hS5KdAqLv+2fKei+oNcDnneOR+Svy8V21ZQcRqtSIrzcbwnZvXuFjLP36s1r5o7vTdyK6dFSFF8/S/yJdqKQchUunvldZyQgFxLyhoIBkFBA//ctVERcLqJIBCkh6nDEDYt47x1I2zoAIWQ+1Rndru2+X/4hVm3bgt++/RJFCeVP/Cqew/fQrWw44BYQCQgGx5RuWXrepGZAT+1WI+E0lTq8qUkZXQJKTNDgVpoGnlwx9putudS1FBoQCkkpg/gjj/gJds4kctZrpbmFLATHvHTRVQKIeAtfPpmcV414C5yPU8PIBKtXN+McXfeNkXi9NK2XqGpDCOVRYPSUJbu5AtRD9f0C6clKN6CdAVlNsmQFhBsS0KOXdAgGbZECEBd3Cwm5jLu2J4sbca4/3UEAoIBQQad5MCgjgrBkQCojuO5Sy/giSF4VB2akm3AY3sMlLZqqAXDupwZ4fjDs3aMic7NncgAJik1DRqZQZEGk4O3MrNhGQ8GPncf/hE6O4vdekrkOvA6GAUEAoIEa96hbfRAGhgDADYvFrlKECcwXEy1eDXHn1r8u5fyO1CQqIdcfK3mqjgNjbiDhef2wiII6HwfweU0AoIBQQ898fU0pSQJxfQAqW0B8RMc+AmCiAAmLKG2P4XtMFRI09P6QgoABQspL+6UrH9qjFk9MHznZHdsywZgbE8Lhb4w4KiDUounYdkgmIsC4kPiFRh7aPt3FbUNrrMFFAnEdAhBPe9V3xiUBSigyt30rGm6V1d1WigEjzdlJAnF9ABMHQd929pobwl3UKiHXfNQpIErgGxLyYooCYx42l0gnYXEAePYnC0nW/YvfBY3gWFaPDnmtANBj6foIOl8vH1dizMQVl35SjSWfdRZfZEcS3Hiqwerc7hF/Uq5XS3QZV6JMjH0RoiCkFxBAh235OAQEe39Ng0zfJkCs08PHTPwUmNkYDtUqGDiPdEFgo0z12uguWdg0IBST9HbLPNSDMgOg754mL0LkI3bb/93PO2m0uIDO+W48NP+3FoB5tUCh/HigzHTrY5J0aeg/+cxTc1sqAnAtX459T6b/UC2dLPH8EePsCOV+Za5sjAGjcUXfHHil4aQVESKv7eenPFkS9TP2FZ0pX3ZOopeijOW3cfiiHBum/qP16yA1PY1IzHgE50p8zTw41fPU8NzMg5lA3vQwFJD0DYgw9nZPQhUIUEGPQGXXPgTNKhJ11Q0jlZDSoYvi8mZMHVAgPVaFafQXefs/w7o8UEKOGQecmTsEyj5uppZgBMZUY789MwOYCUu/9IWjXKgRDe33glPStJSB//6LCqYP6swqvgsudD+g8Nnt2F9EKiDED6UgCkvl5luzwxIOnMvRrkYCCAfpF69UyFBBjIsLyeygg6RkQ4eySEhX0T1e6eVGNhDiIGZA8Kc+ROCv1/CXtpTl9R/xPWdUiGf7dY3xzyArnsnygzKiBGRBdaBQQMwIJAAXEPG6mlqKAmEqM90suIP3HfoMiBfNiwiddnZK+tQUkbxEgIJ/uLxaJCcCN82pkp4AkJMkQ+dy4g/aK5TMsU/YaEBQQ+xwZCojpa0DyvHyExF5rjRpQz7U9ICudej6T1BcFhAJirZijgFiL5OvroYBIw9mZW7F5BkTYknfY5wuwc8Ms5Mnt73QsrSUgf/2qwukwlXhgmnBwWuYr/iVwLkItbn3YZVz2TMFyusHL4oEoIPY50hQQCwQkhycUdUvpHVjV31eBmERQQEyLe07B4i5Y2ojhGhCuATHt24N3CwRsLiCjvliMnfuPZEmbi9BTF6FTQOznhaSA2M9YvNoTCoj5AiIL8IHivSr6BeTn09A8i4Pnmu6QlcmXLYPPDAgzINYKPGZArEWSGRBpSLpuKzYXkH1/ncSd+4+yJNyxTSN4uDvuX/SZAXG+l4cCYp9jSgGhgHAbXuu+m9yGl9vwmhtRnIJlLjmW0xKwuYA4O2oKiPONMAXEPseUAkIBoYBY992kgFBAzI0oCoi55FhOUgF58iwal67+i7h43fMuGr5dHW6ZtuZ1pOGhgDjSaBnXVwqIcZykvosCQgGhgFj3raOAUEDMjSgKiLnkWE4yATl78To6DpyaJXGuAeEaEHt7HW0pIIljfoTmZWLaI7sPbQh5ufxWR/D9Xg9cfyBH5eIpyO2nu5Xwo2gZLt5W4o0gFdq/k5Sh/T9/TsHTe+n/VC5YhvI1DZ9bYPWHyFQhBYQCQgGx7ltGAaGAmBtRFBBzybGcZAIydOJ3uB/5FBOHd0OngVOxfdU05AvMhYlfrYRGrcH86Z849GhklQHZfVKJ8AtuKJhbjby5dH8BTEwCLt1RICCHGkPfS+QidDuKAlsKSHzzb4Ho9Eygx7cdIA8OsvrTWyIgPy1Mxr3r6TFbs6kCtZpSQKw+SFlUOGW9F9Qa4PPO8VBk2mjo8V01Ns1JgbefDBVr6z8J/fwhDeJiNBAOItRuw8tF6NYfPUO7YO1en4IrJ9UGGy5UUoa2g3TXQfIcEIPo9N6gXYRuTOmOIRQQYzjpu4cCYi45lpNMQFp0GYsuHzRB+9YhqNKoF7Ytn4LypYNw6vxVdBk8HQe2zUPePDkddkQMCYihB6OAGCIk/ee2FBD12btInPI78CAK7uNbQPFOaSCHp9Uf0hIBEX7JPf2XGpePqVEuWC7KR47c+n/ZtXrHX1MhMyDMgDhSBoQC4g5FNvzdggIizbcyBUQazs7cis0XoTftOBoft2+GTm0aQfjvgd3fx3tN6+L23YcQ5GTd/PGoXqmMwzLOSkCOX1Xi7I30b9/YROBJtBzeHhoE+qf/ddnfV40P6iYzA2JHEWBLAREeM7HrKqivP4bH2h6Q2+jgN0sEROjjkV0qHN2lgr1kP4Q+UUAoII4oICUqyZGngO4X3ItnGlw+rgEzILb/8v9mmydexMsw4oME+HtnnJHwMhpYPSUJbu5AtRD9Z5sImazoJ0Cr3koUq6B7D88B4Tkgto9i52vB5gLSc/gsFMyfB9PG9sKUOWsRcew8xg7qiL1/ncAvu8Jx5PfF8PXxcliyWQlI5gc6d1OBbX+7o2IxFdrVyzjnXriX54DYTwi4ooBcOqpCzPP0Mbh3TYO719UoXFKOQqXSsx9+uZBt60EoIBQQCoh1vyedcQ2IPkIUEOvGjVAbMyDWZ+pqNdpcQHbsO4Jbdx6ImY9HT6LwQe+JeBYVI3Ie1f8j9OjQ3KGZU0Acevj0dt4VBSTzuo+sRjWrv9ZKEQUUEAoIBcS6bxoFBGAGxLyYooCYx42l0gnYXEAyw05RqfDP9TsoUjAv3N3d4KZUQi7P/vnl5gYFBcRccvZbzpUFJE9BGTz0JCQT44En97OeLiLFaFJAKCAUEOu+aRQQCoi5EUUBMZccy2kJSC4g2oafPn+BwRO+xZJZI+Dv5+OwI0IBcdihy7Ljriwg5WrIkSNA9w8CL54K89XVeuerJ33+K1R7L6XxVHYIhtvQhlYPDAoIBYQCYt3XigJCATE3oigg5pJjOUkE5PK1f3Hl+h2UK1UUZUoUhkyW+ovNjX8fYMDYObj74DGO7lgCH2/r7wIk1RBTQKQiLV07FBAKiBBtqkM3kDRyK+S1isNjbnvJApDb8OqivntNjfs3AAqIdcOQAkIBMTeiKCDmkmM5mwvIhp/2YsZ369NIB1cthxXfjMbJs1cxaPw8eHq4YdHMEahUrrhDjwYFxKGHT6fzdx7LsT3cHU9jZGj9VjLKF1WJO5e97tr4dTKe3tegwwglAgvr30Xl1fL2uAuWdg2IORkQ4dmS5+9Hyg/H4Da4AZSdatokKJgBYQaEAmLdV4sCQgExN6IoIOaSYzmbCkh8QhJqNOuLhnWrYXDPtnj05DnGf7lcPP8j/Nh5MRsiyEeBvLkdfiQoIA4/hBkeYPY2T7yMT88AdG6YhDKFVBSQ10zBooBY9x1gBoQZEIEADyK03nvFXbCsx1JbEwXE+kxdrUabrAG5evMu3u/xGX5dOwMlgwqKTLeEhmHKN2tEKZn1WT94eznutKtXg4QC4lyvzKaD7ohLSBeQxtWTUSTw9acZMwPCDIg13wIKiP0LiPYUdG1Pg/Kq0bNpYoaOaw8i5Dkg1nw7zKuLAmIet9eVooBYn6mr1WgTAdGecn7ot0XI4estMj166jJ6DJ+J438sg5enu9NwpoA4zVCa/SAUEAqI2cGjpyAFhALCDIg13yiAAmJdnkJtFBDrM3W1Gm0iICfPXUXXIdPx8+pp8PVO3dPz3OWbGD5pAXasnwV3N2Ua53yBue1iG161WoNHT58jT25/KBXpJ5hrOxrzMg7CFsK5/P0yxAgFxNVeGd3npYBQQKz5FlBA7F9AjBlvZkDcoed/pcags/o9FBCrI6WAWB+py9VoUwExhmZE6ELJtuFNSkpGr5GzEZ+QiG3Lp6R17+ChMxj1xWLExSeI/zZpZHe0bxUi/rfwb2OnLcX+8FPiz5UrlMT8aUNFUREuCogxo+zc91BAKCDWjHAKCAVEIMA1INZ7qygg1mOprYkZEOszdbUabSIgwknnh09cNIpl43fehNsrGRGjCplxk0ajwWezVuLnP/4WF8NrBURYMP9Om6EY3LMNOrd9F2ERp/HJxPnY9cNsFC4QiBUbf8fW0DCsmz9BnDo2YNxcFC9aAFPH9KSAmDEOjl5ErQYWjkoy6jEafaRAhVq62TTugmUUPp2buAsWd8Gyp12wDEUxMyDMgBiKEUf+nALiyKNnH323iYDYx6Nl7MXyDb9hx77DaNm4DnbuP5ImIEL2Y+Cnc3Fq93LxZHbhatFlrCgjnds2xod9JqFpSDD6dG4pfrYr7ChGTF6E8wdWi+eaMANij6Ntuz5RQGRoOyj1PXn14ja81os5ZkB0WdrjOSCGRpwCQgExFCOO/DkFxJFHzz767hICsvvgcUyduxZbl0/Bn4fOiDtyaTMgwn+v2bxTXJuivYZM+BbFihTAyP7tEdy8P6aN7SVKiHBd/OcW2vWdDO3UMQqIfQSyVL3QCoiwT1ZwE/1nftw4r8GT+xowA2LdUWEGhBkQZkCs+06dvaHEj+FucFdq4OWhv+7o2NRdAad0jcflY2rs+SEFAQWAkpX0f/8d26OGRgMMnE0Bse5o2VdtFBD7Gg9H7I3TC4iw+L3n8FlYNXeseOjhll8PZBAQYYrVHweOZlgTIqwHERbPTxr5MSo26IFFXw5H/dpVxPG9fuseWnefgL2bv0GBfAFIUb1+i1ZtUBz7R4ZVu2SoUVqDXs10D7bbuTkREbuSULKCAkVL6U7biY3R4OiBZAQWkGPodB9HjDWn6LMgIJN6x0AmA0Ja6d/N7fIpFR7cUeH9Hp54s55utuDB+0uQ9M8jFPipH9zL5bMJl+9+luPSHaBmWQ0CU5crZbjuPwNOXZOheimgT3M1Vs6Kw60rKlSto0SuQN1fLJ4/VuN0RAqKlVWg11hvRH68FonHbhvsu0+rSsgzq43B+4y5Yc9JGX4Kl6FEfqB8Ud13KDkF2H1SBi93YE4/Nf7akYTd2xLF90l4rzJfSYkahO9Khpe3DOMX+Op8Hv/XNTzqtxGedUsi3/LOxnTRKvcMWiCHWgMsGKSGItNQ3L+twuIpcfDNIUdwSPpmHq82fOxgCl5Gq9H/c28ExjzEg49WQBHoC9921fX27+WWE1A9iUWBH/vCvXx+qzyDqZVM7BkjFmnQWv87dfNyCm79oxY/b/i+7m/KD3uuR8LhG8i3ojM865Q0tXmb3L9tWTzOHE5B+epK5NdzQOnzJxnfqcydeLEiAs/n7EWOnrWRa1Rjm/Tx6GUZVu9J33b8dY0sHqLGqfAU/LQyHvkKy1Ghuv74CwtNEgVk8nI/u1mE/ukqOaJigRk91MiV6VV/8VyD2SNfwt0DqNtUf/wJ4/jskRpdh3mhTGXd575TZzbUUfEoEj4K8lypO386+1WhfDlcvXoVAwcOQkBAgM7jRkSEY9++fRg5ahRmzkz/A++rNyozf8E5OzQ+XwYCTi8gU+d+j0MnLiCkdlXxwS9evY0LV26hXcv6GPDxe9h54KjBDMj0cb3RpH6N1PKZMiCPojLu/Z5VfJ25IceWP91QubgaH9VP1rnt4M8pOHkgBUXLylCwuO4vgHEvgbN/q5A7nwwfj8/iT1UMbpsTEATk2+EJEP6XXauZ7i+1Qgeun9Xg8X01Gnd0Q8W39MhkpxVQX38Mn/W9IC+d1yZ9Xr3bDdfuy1GlpAoBfrq/rD+MkuHCLQUqFlOjY0gytn6XhLvX1agQrMD/2TsP6CiqLo7/t6QTCCQEQg9dpCgSmiIgCNKLdJAO0hUQQZAmxYZUaR+9CCigNEGKELoU6VINnRA66cnW77yJu8lmN+xsZia7s3vnHM4hu+/defO/983Ob+4ruYOtH0jinhlx+ZQeRUop0X6YN5IG/AT92bt2267+oCL8JrewW45PgcOXVPjjtBrF8htQurA1+Gv1wOGLavh6AeO7puLUPh2ObNdx/Yn1q8yHVmPE3/sN8PVTYOA31n1Kd+wmkof/DFXNcPjP6cSniaKUGb/KhwOQr7qnWgHI4/sG/PS9Bv6BClR+2/Yb6IvHDEiMM6LLZ94IiX+EpF4roQgJgFfrtHuglQ6/noXxeRIC1vSGsqw0QGxPmFmfpC0AUjOLPnXvhgEPoozc97WaWEN90pD10J+6Df+5naCqEW7vdDny/a7VWlz9W49SlZXIXyirPmUw96nMjdKs/gup8w/Au1sN+Ax9T5I2J6Qo8ORletteJiqw6bAaeQKMaF9HZ3HO8IIGXD6px+6ftAgppEDpyrbj78RuPQcgw2b6ugyAfPuLD+KSgM/bpyJPpvd3CS+NWDIxFV7ewFvv2b6nXzltQOxTI1r390b469bXndBoNoyxyci1+xMogjwDQGpVq4ibUf+id78ByJfPGkBOnjiOQ5H7MXjYCEyYPN1m/IYG0bOMJB1bJkbdHkAOn7iAKzfS39SevxyFC5ej8FG7Ruj24fs4de4aNwfk3N6l5snwjTuPQvf2jcxzQD6oXx19uzTjXOqKc0D0Z+5Cv+wo90CoKFMA6qYVoe6YBkx0iKsADcFKmwOSOngdDGfvQdXkdSjCrFMshhuPYTj8L1SNX4f3xLT5U0IP0xAse3YYgHzRKRl/79fj2A49wkooULSsbQA5G2nkAKTfNOuHWv3xm9CM3AhljXD4zOpg77SifU9zQKylpDkg9UWLr1cZehKrwI/bfBGS24ihrdKgMONBQ7DUKFHBGkCSm8wFYpPht3Mo4CEAQkOwcqRLuvVJJAeQZy/iuAd704aEJjVTUjVg3xUqEMxN5s6pI/MQrKTkVEQ0+RijB3dGFxurYLHJ65t2HORWwfL388GA0TNdahUsY3wKUj9cDGOC5Y+F94+doapaLKdk9ZjzEIAQgEgd7AQgBCBMgZxYhjez0gQgtrM6186wDAjQoi8BiClmTABi7344cMhwfDlpms1ihYLT9omjwzMVkBxA2ITuCuVKYGD3VhYK/3vrAVr1Sp9LkVPyZwYQdl62xwdrp+n48tOP0Ll1A+7PxKQUbo+QQ3+d5/6uWC4c86Z9gtCQIO5vZ09CZ9kPzZD1VvKp+7wNrz7v5JSsHnMeAhDnAUjmILv1SImVe3xQooABvRpZD4WkDIgaIQmPkdpnFRTBAVC1SpvHlvnQbznHDcHyXdkTCicNwZo3Im1pazbJ3NZBGRDKgAj5kaF9QISoZ7suAYj4mnqaRacByMNHz9Cw40j8umwKypUq6nTd9XoDYp48R2hwkM19SWLjE6HV6swbEJoaTADidNflaAMIQAhApA44yoBYK0wA4loAwqcP0CpYfFSSbxkagiVf37lKyyUDkJ+37gcb3rRxRyQKFQzB29Uqmq9Zq9Phz8NnEP3oKSI3z4FKxishOBtAjNGxSGm3yCqevMc1hapZJVeJM7dph1wAZM0+b/z7UIVSYQYE+ltPQo9NUIBlEF4vpkeHuhr8Ol/LTfItX02Z5ST0q6cNKFyKAETqYCYA8UwAMdx6BrxIMl+8bu8/0G89D1WD16Bu86b5c0VuXyhK55ckDPkOweJzcgIQPirJtwwBiHx95yotlwxA2ETu+w+f2LxOfz9f1K/9Bto2exc1q1ZwFS2y1Q5nAwhrtP7QDWhn74MxJg6KAB+oOlWj4VfZ8qb9SnIDEHtXRABCk9BpCJa9XpK973ev1eL6GSPyhirgl8v6JYAmBXgaDRQqqcCHQ7ygGb8cYttyAAAgAElEQVQV+j+v2j2ZsnoJ+MzuaLdcdgrwBRDaB8RSXZqEbr0K1qmTx3H44AHQHJDs9ETPqCMZgJjk+27+eoQXD0P75vXcUlFXABC3FNZFL0ouALLnbzXuP01fUpItr8k2FMsbYETugPSHoZJhBtSrrKUMiMxWweLTPToOpzkgfHSSqoxpJ3R79k1ZRTOA5PEDt5Z05kOj4zIkBCD2FLX+nuaAOK6ZvRqUAbGnEH1vTwHJAYQ1wGg04va9GMQ8fo6SxQuhQP68uPvgEVgmJCSfjV3S7LXahb4nAHEhZ+RAU+QCIJml2HfWC4cvqdHgDS3erWS5vj8rS0Ow5LUML59QJwDho5J0ZbKbAVHWKwtlyRCrhhnvv4R+z2UoI0rAZw5lQBzxHAGII2rxK0sAwk8nKpW1ApIDCFtFii1de+bida4V34ztjxaNamPY+Lm4fTcG21bZ3qBGLk4jAJGLp8RpJwEIzQERJ5KytvKqOSCOnttwJYZWwXJUNJHKmzIgJSspERJmbTTuuRFXTxvN86pMGRACEJEckMEMAYj4mhKAiK+pp1mUHEB+2R6Jecs24/NBnbF2815u8z8GICfPXkWv4d/gwKbZ5iVt5Sg+AYgcvZb9NhOAEIBkP3r41SQAsdbJE1bBIgDh1z+yU4oAJDuqvboOAYj4mnqaRckBpE3vL9G4XnUM6N4S/UfNQIv3a3MA8vxlPOq0HooNiyaiUvlw2epOACJb12Wr4QQgBCDZChwHKhGAEIDQECwHOgyPogQgPERysAgBiIOCUXErBSQHkJY9xqJ1k3fQu1NTCwCJuv0ALXuOw54NM1C4oPV4V7n4igBELp4Sp50EIAQg4kRS1lYIQAhACEDE7WUEIOLqyawRgIivqadZlBxApsxajSMnL2LV3C8w4bvlXAakQZ23MGrKQly4HEX7gPwXcYe36XEuUo+iZRUIK6GwisPkBODiMQO3pGO3MTZWSPG0yHXS9RKAEIBIHXoEIAQgzgCQFwkKHLusxslravh7G/H263q8U1Fr4YyrpwzYu14HWobXMkZpGV5ahlfq3wV3tC85gLyIjceHfSfg0ZMXnH5FwvJzw6+SklPw4/RPUL92+gZLchSYMiBy9Fr220wAQgCS/ejhV5MAhADEGQByK0aFlXu9zeL7eBkxtlMKAQiAa2cMiH0KtOirRokKSusXhE3mArHJ8Ns5FAjy59fRZV6KMiAyd6ALNF9yAGHXmJyiwS/bD+Cfq7cQn5iM8KIF0aZpHZQJL+ICEghrAgGIMP3kVpsAhABE6pglACEAcQaAsAzIuaj0vYO8VArKgPwXigQg1n2SAETqXwL3t58jAOLOMhKAuLN3ra+NAIQAROqIJwAhAHEGgPCJaxqCRRkQU5wQgPDpMVTmVQpIBiDXou4hMSkZb1YsA4UibU7D3QePsefgKTx/EYf361bjvpP7QQAidw861n4CEAIQxyLG8dIEIAQgBCCO95tX1aBJ6OLqyawRgIivqadZlARAtFodarccgiqvl8LSGaM4TeMSktCg/Qhu7ofpmDV5CBrVrSZrzQlAZO0+hxtPAEIA4nDQOFiBAIQAhADEwU5jpzgBiLh6EoCIr6cnWpQEQM5fjkKXQVOwZt5YVK1UltN18ZrtmLtsMwckZUoWwfjvluPS1Zs4sHk21Kr0cadycwIBiNw8Jqy9BCAEIMIiyH5tAhACEAIQ+/3EkRIEII6oxa8sZUD46USlslZAEgDZHXkKIybNx6ldi+Hv58Od/aOh05GckopNSyZzfx8+cQEDRs/E3g0zUIj2AQEtwyuPbkoAQgAidaQSgBCAEICI28sIQMTVkzIg4uvpiRYlAZBfdx7iMhwX96+AUqmAXm9A5Qa90anVexg/vDunc3TMU7zf6TOsWzAeVSqUkq32lAGRreuy1XACENcAkJsPVfjjtBqPXirBlgstV1SPD9+23LPg7/16HNuh5/bVYfvrZD60GiPORhrh66dAv2nWe+voj9+EZuRGKGuEw2dWh2zFS3YqEYAQgBCAZKfnZF2HAERcPQlAxNfTEy1KAiBHT13idj3/bflUlC1ZBGcv3UC3IdMwdXQftGlSh9P57wvX0X3YdOxY/TXCi4XJVnsCENm6LlsNd3cA8Q9UQK22lkanA5LijShcyjUA5OJtFTYdTt+zIDi3AcNapVo0nAAEMFyJQWqfVVAEB0DVqorNmNdvOQfj8yT4ruwJRdkC2eoXQivNG6HhTFRvZL3HAvv8/r8GRN9M+77GB9YBmjrsZxhO34bP7A5QVg8X2hxR6u9Zq+P2jyhZSYkQGz9xcc+NuHo6vU9pxm+F/s+rUNYrCwIQUVxgNkIAIq6eBCDi6+mJFiUBELbvx7tthiEsNB+6tm2IjTsO4s79Rzj46xzzkKwfl/+Ghau3WgzTkqMDCEDk6LXst9ndAcSeMq4CIAkpCjyNTX9Y9VIZUTjEQACSyYEEIPYiWrrvCUC84SrTOwlAxI9zmgMivqaeZlESAGEimrIg7P/+fr4YP/wjtGz0Nqfv46cvUb/dp3i3ZhUs/Ga4rDUnAJG1+xxuvLsDSNFyCgQEWg9XSow34t4118mA8HEcZUAoA8InTqQqQwBCACJVbLmCXQIQV/CCvNsgGYAwWdiSu7fuxqBsqaLwUqevdPXw8XNc/fcOShQpKOvhV+waCUDk3QEcbb27A0j5akrkDrYGkLhnbLiIwWWGYPHxGwEIAQifOJGqDAEIAYhUseUKdglAXMEL8m6DpAAib2n4tZ4AhJ9O7lIqOwCSMmidxeUbr8YAKVooyxeE0Td98rN3j9pQ1ighiVT7znrh8CU1GryhxbuVdFbn+HW+Fg+ijCAASZeGJqFLEoo2jdIcEC/QHBDp4o2GYImvLQGI+Jp6mkUCEIEeJwARKKDMqmcHQJJrf8vrKr3HN4eqyeu8yjpaiACEVsGiSeiO9hph5SkDQhkQYRHk2rUJQFzbP3JoHQGIQC8RgAgUUGbVhQCIqklFm1erP38fiH4JAhBxg4GGYNEQLHEjyjFrBCAEII5FjLxKE4DIy1+u2FoCEIFeIQARKKDMqjsMIFWB5LozAKUC6p61bF6t4eB1GKKewmt8M6izgBShMlEGhDIglAER2oscq08AQgDiWMTIqzQBiLz85YqtJQAR6BUCEIECyqw6AYhr7APCJ2woA0IZED5xIlUZAhACEKliyxXsEoC4ghfk3YYcARCj0Yjb92IQ8/g5ShYvhAL58+Lug0fc8rwh+fLIWkECEFm7z+HGE4AQgDgcNA5WoJ3QrQWjjQgB4/2X0O+5DGVECfjM6ehgVIlT/OopA/au1yE4DChVyfamkaf2GmA0AoO+JwARR3XXtEIA4pp+kVOrJAeQxKQUDBg9E2cuXud0+WZsf7RoVBvDxs/F7bsx2LZqupz0smorAYis3edw4wlACEAcDhoHKxCAEIDQTugOdho7xWkVLHH1ZNYIQMTX1NMsSg4gv2yPxLxlm/H5oM5Yu3kvun34PgcgJ89eRa/h3+DAptkIDQmSre4EILJ1XbYaTgBCAJKtwHGgEgEIAQgBiAMdhkdRAhAeIjlYhADEQcGouJUCkgNIm95fonG96hjQvSX6j5qBFu/X5gDk+ct41Gk9FBsWTUSl8uGSuyZVo8WTZy+5YV/5ggKtzmcwGPH42QtuSJhalb5poqlgfEISdHo98uaxrEsAws91cc+NYOn7jEf1xtY687PmvFIEIPIBkDMHDDi6XQdvXyN8fK0noRsBJLwEfPyB/lO9rYKK9gHJuX7m6D4gKY3mwJiQYreBXoPrQd21ht1yUhSgOSA0BEuKuHIVmwQgruIJ+bZDcgBp2WMsWjd5B707NbUAkKjbD9Cy5zjs2TADhQuGSKrgl98uw2+7DpvPUbVSWcybOgxBeXJxnx08fh6ffbWQ27mdHRNH9kSHFvW4/7PPRk9djP1Hz3J/V65QiqtrmrtCAMLPdWwM928LLDfAGzrT+qGPnzXnlSIAkQ+AmCah24sWXz8F+k1L3xDSVJ4AxJ5y4n1PAEIbEYoXTdaWXpUBSYoDlk3SQO0FlKlie17L3esGJMYBLft7oXh565cZyU3mArHJ8Ns5FAjyl/JSXMY2AYjLuEK2DZEcQKbMWo0jJy9i1dwvMOG75VwGpEGdtzBqykJcuByFyM1zoFLZ7vRiqbp4zXa8U70SypYqioePnqLr4Kn4qF0j9O/WAskpGrzbZhiG9G6Drm0bIvLYOXwyfh52r/8eRcLyY+m637FxeyTWzBsHP19vDBwzC+HFwjDl895c8whA+HmJZUCunDLg5G49V4FlP2pQBoTTgpbh5RdDjpYyZUDyFQAKFLW+x+j1wPWzBsqAbDkH4/Mk+K7sCUXZAo7KLEr57AKIuksE4GsNj4aTt2G4FA3KgIjiHrMRd56EzkepFn3VKFHB+l5CABJsJd+pk8dx+OABDBwyHF9OmmZT3kLBfnxkpzJuqoDkAPIiNh4f9p2AR09ecBKyh3o2/IplFn6c/gnq134zR6XVanV4r/1wDO3dFh1a1ueyH4O+mIWze5bA2zvth6xpt9EcjHRt+z7a9ZuIxvUi0K9rc+673ZEnMWLSAlw6sAIKhYIAxEHvmR405Jj94GDBAMz/TAP2DiyikW1wvnnJiKfRRjToqEIF2gcE3hPT+k5OH44uw6vfcwXaLWmZTu6IS4bx5lMg0AeKUqHmj5W5feH9TVvJLofmgFhLm3kVLNMQLAIQycLQpmF3BBBTBoRdcGAW01GTEgG9ljIgGYOCMiA52/fc8WySAwgTjWUZftl+AP9cvYX4xGSEFy2INk3roEx4kRzTVKPRYvmGXTj413nkD86D6WP6IVeAH9gk+ZU/78LOtd+a2zJ03ByUKBqGkQM6IKLJAEwd3YeDEHZcvn4b7ftPwrHt85EnMIAAxEEPEoBYC0YZEAeDiGdxRwFEt/oEtIsi7VpXBPnDlw21EPnQ6oEjl9SIvJD2IqRuJS3erqCHjzebrZK9w3AlBql9VkERHAB32oiQAISW4XWkR9AkdEfU4leWAISfTlQqawVyBEBcwQEMgsZ9sxRX/72D0JC8+Hpsf4SF5uOGWP1x4CQ2LZlsbiabD5LL3w8TR/ZAxfq9sODr4ahbqwr3vWnuyr6ff0BYAeu0Y1bXevIasGQXEFEW6N/UutTv61Nw5I9UlH5djeJlrCdnJ8Yb8defGuQPU2LEN9aT6F1B48xtiL6jx+/rLCeK3ryaNg+kZHm1RfF+XwS44iVYtYllQMb1ioVCAbzXysdmmy//rcPDe3p82McP1WqpEFVxCrcTet5B79osn7T3ClKvPUbot20Q2DotzsQ+fj0K7DoFtKkNNK1ubf1/0xNw65oeVd/2Qt781pmdF08MOHNUi/ByKvQfmwsPuq1Ayqk7yNW6CryKWL82TL0Sg6Q/ryFXy8oo8L102YJX6XTw91T88UsK159Yv8p8aFKNOLxLAz9/BSYszI0Xi4/g+cx98CobCt/XC1mVN6ZqkbDzH6jyBaDE8VFiuwgJycDwxZZmv+0D5BPQ3VMvRuN+u/9BnT8XAju+ZbPNcRtOQ/80EUW3DID3awVFvy4+Br/oEcsVa9Dadp+6eUXHxSf7vmEbX9yq9g0M8SkI6lsbChtDsJKPRCHl3H0Ej3ofQX3f5tME0cv8vCgJ545rUeEtL4TZGAKYuU89+nQjEnb9g4DGr8G7THrGzdQw3d0XiN92AX61S6LQiu6it5ePwTNHtNi4JAkFiyrx+lvWQ9+Yjf1bU7l9QKYuzwMb67nwOY3oZUYtAV4mAt/1BfKmTf00H3EvjPj60zh4+yhQp4nteYnMj88eGdBzRADKVbG+l9yq8S0ML5MR/tfnUOb1jDkgZcuWxY0bNzBkyBAEB1s/Cx09ehT79u3DqFGj8N1334nuUzIofwVyBEDY8Kujpy7i7oPHVoqx1bF8fXJuMjLbFLHfqBkomD8fl9ngkwGZNqYvGtWtxrWdMiD8g97WxPOsastlSBYNwZLfJPSwEgoULWs9cVSrMeJspBGmSeja1cehW3QIisqFoapW3BpAkjXQrz/NTTLlJpuKfJgyIBnN1n6NMiBMDxqCRRsRCuluYmZAihfXQbf+hEVzdGtPAhodMg8JVDepCEXhvEKa7rJ1KQPisq6RTcMkBxDTnAmmCFv+1svL8u3B1hXTEJgrZ98YTJ+7FjfvPsTSGaPMc0DO7V1qblvjzqPQvX0j8xyQD+pXR98uzTin0hwQ/rFtAhC/XEDx8rbnS1w9nbY0LwHIU3iNbwb2gyXFse+sFw5fUqPBG1q8W8lyNTJ2vl/na/Egyojy1ZTIHWz9sB73zAjmq8KlCECkAhAp/E5DsGgZXjHjyh3ngCTEAisma+DlDbxZz/bv1LUzBsQ+Bdgk9OIhiUhpvYCXrD6zOkJZowSvsnIrRAAiN4+5XnslB5COH09GgL8vfpz+Kfz9bKfXpZQlITEZ/1u7HW2a1EGRQqFcBqPvyO85oPj4oxZISk5FRJOPMXpwZ3SxsQrWkp92YNOOg9wqWKz9bFd3R1fBuv9EiSOX1bhyV4X8eQx4u6Ieb5a0fAg8vE2Pc5F67k0te2Ob+UhOAC4eMyBvqALdxthOfUupY3ZsmwAkMC/wWnXbe36YVsXKCkCM8SlQBPpm5/SS1KEMCAEIAYj4XYtWwaJleMWPqnSLomZA/gMQo1oFZcUwm802Rj0B4lNBAEKrYEkZ13K3LTmAsH1APnivBgb1aOUUrRKTUtDjk69x5cYd8/lbf/AOJozoAZ//Vr1ie3ywieem48tPP0Ln1g24P1l9Nifk0F/nub8rlgvHvGmfmHdv57MM719X1dh1Kh0aioca0LtxqoUeBCCWw/CM1x8h9YvfYHyYNjZc9WYxeI1rCkWhPE6JI9NJCUAIQAhAxO+CBCAEIOJHVZrFO4+U2BDpjSSNAh3qalA6zAAfr/SFHRzOgAQnIKXNQsDfG+pOaUOzMx/6Py7DGP0S3jPbQ1WzpFSX5lS7lAFxqvxucXLJAWTGop9x7tK/WPvjOKcKxkDi2YtYhOQLspmJ0esNiHnyHKHBQVbDxFjDY+MTwZbwNW1AaLoYPgDCMiA3otNTu2wjdsqApCmYVQYkpe1CGGPiLGJG1aQivMenDYVz1kEAQgBCACJ+7yMAIQARP6rSLE5cY7nXRP+mqSgcnDb0lx0EINlTngAke7pRrXQFJAeQrbuPYuzXS9CrUxOEhVqvlNC+eV3z/htydAwfAOFzXZQBscyAJNdOXxbZpJ+iTAH4rurJR07JyhCAEIAQgIjfvQhACEDEj6o0iyv2eMNoTB/W3LKWFiG5CUCE6k0AIlRBqi85gHw64UfsPXQ6S6VN+2nI1RUEIFl7TsgcEFsAonyzKHzmd3FqqBCAEIAQgIjfBQlACEDEjyp+FikDwk+nzKUIQLKnG9XKwQyIu4tNACINgKQOXgfD2XsWxtV93oZXn3ecGlLuDiD+gQqorZe5h04HJMUbaRUsCZfhlSKwaRUsWgVLzLiS6ypYr9KAACR7EUIAkj3dqFYOAwjbe+P2vRjEPH6OksULoUD+vLj74BH8/Xyt5lTIzTkEINIACFv9Sjv7Txhj0iahK6sWg7pDNZdYEcv0tva1araXbIy+nbZkY8POarz2hhHJdWdwGxGqe9ayKZYr7YRur//RMrzS7QNiT/vsfE8AQgCSnbjJqg4BiBrFaRI6Fx4EIGL2LM+0JfkQLDb5my1de+bidU7hb8b2R4tGtTFs/FzcvhuDbaumy1p5AhBpAMRVg8KUAeHTvgYdVahQFbIAkCf3DUjNsGn9lVMGsIeN8hFKvBaRDlo+vkD+IkqYMlSqJq9DEWa9MpnhxmMYDv8LVePX4T2xOR+5RC9z5oABR7fr4O1rhI+v9dLWbB2chJeAjz/Qf6o3nL0RoegCACAAIQARM64IQAhATPFEACJmz/JMW5IDCNtpfN6yzfh8UGes3bwX3T58nwOQk2evotfwb3Bg02zzkrZydAEBiGcBCLtaUwYkMMj2tScnATqNvDIgma/kxG49t0JZ9cYq1GhsvYeLnADE3n2FAOQcjM+T4LuyJxRlC9iTS5LvaQ4IzQGRJLB4GKUhWDxEslGEACR7ulGtdAUkB5A2vb9E43rVMaB7S/QfNQMt3q/NAcjzl/Go03ooNiyaiErlw2XrEwIQzwIQd50DktGLh7bocOuSEXHPjcidT4HqjZRWG0nKAUBYdiP2afp6/4/uGbmMSGgRBd5pmT7RRakGt/knZUAIQMT8IdqzVge2g3bJSkqE2NivjvWvq6fT51Vpxm+F/s+rUNYrC2XJEKumGO+/hH7PZSgjSsBnTkcxm8rbFmVAKANCGRDe3YUK2lFAcgBhGxG2bvIOendqagEgUbcfoGXPcdizYQYKF7S+2crFcwQgBCCZFbh5yYin0UbIaQhWxmv4db4WD6LSH9xtZUHkACCZ/XL3mgFbF+tQtKwSrQdYz7QnACEAEfN3hwDEGyrr5KmYEotiizIg2ZORMiDZ041q5WAGZMqs1Thy8iJWzf0CE75bzmVAGtR5C6OmLMSFy1GI3DwHKpXtybxycBQBiH0AYSsrFS9v28dXTuk5A0NnWu4D4qq+94QMSOb5ICwLwv5lPAhAhrpqiFq0i+aA0BwQMQOVMiCUAcmcAbEXXwOHDMeXk6bZLFYo2HKTSHu26Hv3UkDyDMiL2Hh82HcCHj15wSlXJCw/N/wqKTkFP07/BPVrvylrRQlA7AMIHwcTgDyF1/hmUDepyEcuh8pcvafC0X/UuPtEifCCerzzuh6lC6WBX3YPAhACkOzGjq16NAeE5oCIGU+O2KIMiCNqpZc1ZUDs1SYAsaeQ534vOYAwaZNTNPhl+wH8c/UW4hOTEV60INo0rYMy4UVkrzwBiH0AYWPsAwJtl4tP41LKgERJByBbjnrh7M30IUc1yunQtLpWUN8jACEAERRAmSoTgBCAiBlPjtgiAHFErazLDuj7EbZv2YyFS1ajZZt2vIxSBoSXTG5bKEcAxG3VA0AAYh9AAvPCahKzqRZbaYkA5DoMEgIIy4A8fJ4+hKpofiNlQGgOiLnj6rfQKlhS/EbRHBCaA+I9sz1UNUtKEV4uZ5MAxOVc4vINkgxADp+4gCs37qBt03e5zQafPo/Fph0HLQR5t2ZlVChbwuVFelUDCUAIQDIr4IqT0MXuZJQBoQyImDFFGRD3zIAooh5BfyhtDzB7h1ffOvaKSPI9ZUDEkZUARBwdPcmKJABiMBjRsOMIlC5RGIu/GwmFQoFrUffQts94C20b14vAzEmDZa03AYh9AHHHSeh8gtaVVsHi015HyhCAEIA4Ei/2ypoAJOOmlxnrPHmQtrIcWxK6xgdqpDSaA2NCCtRdIgBfLyvzhpO3YbgUDa/BNAndnvaOfO/oJHTsugjN9J28TuF3bDSvcmIXIgARR1ECEHF09CQrkgDI5eu30b7/JKyZNxZVK5Xl9DQByB/rvkPRQqHYHXkSIyYtwNk9S+Dtbf0DIhcnEIDYBxA+vpTbJHQ+10QA4tyd0DP7iJbhrWIzbF1pCJa9fkUAIq99QMwAki8AimJ5bbrXeO4+9zkBiL3od+3vCUBc2z+u2DpJAGR35CmMmDQfF/5cbl5iNzOA3H/4BI07j8KO1V8jvJiNXZpcUS0bbSIAydpRbDnXw1v5rbbUdrB8IXTdDC2eRRvRaYQa+YtkWm5Yq0dy3RmAUgF1z1o2xTIclHYOiBRdiTIglAERM642/2i5KMKTaAO0KQoEhwE+funzlyrUUIFlSSgDIo+NCLHzAjRf74KiTH6o6pSxGTK65cfSAOTI59x9MqcPyoCIozgBiDg6epIVSQDkt12HMXPxLzi8ZZ5Zy+iYp/hm/jpMGN7DPCekbttPsG7BeFSpUEq2mhOAyNZ1ojWcACSPlZaGG49hOEwZENGCLJuG5LIPSMbLu3LKALY4BdspnMHGaxEqFC5t+WBKAEIAks0uYVWNAEQcJQlAxNHRk6xIAiB/X7iO7sOm48TvC5ErwPZGM2cuXsdHQ6cjcvNs5A8Okq3mBCCydZ1oDScAIQARLZhENiRHAGHZkOibRrMSpmFXGaUhACEAEaurEICIoyQBiDg6epIVSQCEbT74TquhGNbnQ3z8UQsrPY1GIwaOmYl/rt3God/mcpPU5XoQgMjVc+K1mwCEAES8aBLXkhwBhGVA4p4ZzEIUKU0ZECaG8f5L6PfIbA4IDcGiZXhfcUujfUDEvd/LzZokAMJEWLh6K35c/hsGdm+Fj9o1Qp7cAWDgcS/6MWYv2cxNQv96bD+0bPS23DSzaC8BiKzdJ0rjCUAIQEQJJAmMyBFA+MhAGRDKgPCJEz5lKAPCRyX7ZSgDYl8jKmGpgGQAkqrR4psf1+GXbQe4M/r7+SIpOcV89gHdW2JwzzZQOmHSmZhBQAAipprytEUAQgDiqpFLAELL8IoZmw4vw0sZEMqAUAZEzC7oVrYkAxCTShcuR+HU+Wu4eSeaW26X7Q1S/c3yKBNexC2EJABxCzcKuggCEAIQQQEkYWUCEOcByO61Wlw/Y0RYOBAUnGl1PACJ8UbcvWZEoZIKfDjEPTcipFWwaCf0V93eaAiWhDd/GZiWHEBkoIGgJhKACJLPLSoTgBCAuGogE4A4H0DsxQYBCC3Day9G5PA9DcGSg5dcq40EIAL9QQAiUEA3qE4AQgDiqmFMAOI8ADm9z4A7V9P3QUp4CW5p4YA8QJ7g9IVXQgorULeNGprxW6H/8yqU9cpCWTLEKqRoEro0vYzmgIijKwGIODp6khUCEIHeJgARKKAbVCcAIQBx1TAmAHEegGSOiTMH9Di6XY8366rwTiuVVcgQgNBGhK56H+HTLgIQPipRmYwKEIAIjAcCEIECukF1AhACEFcNYwIQ1wCQ2GdGnNmvx6XjBpSuokSND9TIV8AyaihbkMEAACAASURBVAhACEBc9T7Cp10EIHxUojIEICLGAAGIiGLK1BQBCAGIq4YuAYhrAMiRrXqcPZg+HKvsmwo0/sjLImwIQAhAXPU+wqddBCB8VKIyBCAixgABiIhiytQUAQgBiKuGLgGIawDIxaMGXD+bDiDFyqkQ8b7lylgEIAQgrnof4dMuAhA+KlEZAhARY4AAREQxZWqKAIQAxFVDlwDENQCET3wQgBCA8IkTVy1DAOKqnnHddnnMHJDkFA1evIxDwdBgm5sfGgxGPH72AiH58kCtsp4gGJ+QBJ1ej7x5Ai28SQDiusGdUy0jACEAyalYc/Q8BCAEII7GzKvK00aEahQPTkBKm4WAvzfUnarZlEv/x2UYo1/CeybtA/KqeKJ9QMTsnfKz5REAMnTcHOw/epbzTr6gQLT+oA5GDuhg9tbB4+fx2VcLzTu1TxzZEx1a1OO+Z7u3j5662Fy/coVSmDd1GAcq7CAAkV/Qi91iAhACELFjSix7BCAEIGLFErPjjgCSFAcsm6ThZAoMsq1WUiKg1wIt+3uhWN54AhAbMlEGRMye5hm2PAJAflz+GxrVi0CxwqH46+/LGDx2NjYsnIBKr5UEy4y822YYhvRug65tGyLy2Dl8Mn4edq//HkXC8mPput+xcXsk1swbBz9fbwwcMwvhxcIw5fPeBCCe0UdeeZVLJ2iRnGA0l2nRV40SFTKM7dbqkVx3BqBUQN2zlk1bhoPXYYh6Cq/xzaBuUlEWqqYOXgfD2XtQNXkdijDXBxC24/SRbVo8ewj4+AElKyrRsLPaQmvt6uPQLToEReXCUFUrbuUHY7IG+vWngSB/+O0cKgs/EYAQgIgZqO4OIPa0IgDJWiECEHvRQ99nVsAjACTzRb/Xfjg6tXoP/bu1AMt+DPpiFs7uWQJv77RVSZp2G83BSNe276Ndv4loXC8C/bo2577bHXkSIyYtwKUDK6BQKCgD4uF9igBEHgBy7W8j9vykNUdr3oJAt8+9CUAA6Lecg/F5EnxX9oSibKa1YV20f6c0mgNjQgrUXSIAX8vVpFiTDSdvw3ApGl6DCUDEdKE7AgjT58G/6S+R2N87V2mRkgg07amGr3/6ppHBYQr4JMRRBoQyIGJ2K4+15XEAcuf+Iw4wFnw9HHVrVcEv2yOx8udd2Ln2W3MQsCFbJYqGccO0IpoMwNTRfTgIYcfl67fRvv8kHNs+H3kCA/D4ZYoowXNwiw5so6pi5RQoFG65Ogo7QVICcOGIHvkKKNBjrOWDkygNICPSKKDVI/6d77kMiHfv2jbPoYu8DsO/T+A7sTm8msojA5I04Cfoz96DumlFKAtZZ0D01x9Df+gG1B+8Dr/JLaTR1gGrSfHA8xiDuYaXjwIFiqU/WLAvUlcdh2bBQSirFIY6ooSVdZYB0f50Coogf+TaPcyBszuvqP7yQyT1WgVFSAC8Wr9hsyHaX89yABKwpheUEgHIw+cKpGgUyJPLiHy5LB/2sqNOQoPZHIB4dasOhQ0A0Z+4Df3FB/AZUh/eH9XIzilyvE7KuC3Q7rsK9XtsJ/T81vF3/yW0f/wDVfUS8J/XKcfbx/3+nTRg909ahBRSoHRl698pVubEbj2MRmDYTB8Yfr+AlGk7oSwTCnXdMjbbrFl6lPs88Pho7j7pCsfi8RokxRnR/ytvBOSxbJMhJg6JrRYA/j7w7mJ7Doh21z8wPngJv9kdoK5V0hUuSfI29O/dDVt/24zFy9agddt2vM4XGuTLqxwVck8FPApAEpNS0G3IVOQK8MfK2WOgUim5IVZ/HDiJTUsmmz3M5oPk8vfDxJE9ULF+LzOssAJRtx+gZc9x2PfzDwgrEAytLv2hRkiI/PFzKo7t0aBUBRWKlraeBJ8Yb8SpA1rkD1Ni6NQAIaeiujmpgFaPu29M435Ycw+oY/PMyfuuQnv9MYKnt0ZAq8o52bpsn+tRj1VIPX0H/q0qQ13YeuC05uojpOy/Bv8WlRDyTZtsnycnK8YuOYLY2fvhXbUofGuGW53akKxBwoq/oMzrjyJHPsvJpmX7XJpL0YjpuBSq/LkQ0L6qTTsJv/wNw9NEhG3qD6/XCmb7XLYqJqUCs7cocf9J+rfNqhvB/gk57tf8Dob4FAT2rmUTQFKO3oTm/H0EjWyI3FmAv5DzS1H36chNSPrjMvwalYdX6VCrU+jvvkDijovwrVUSoUu7SdEEuzbPHdXh1+XJKFBEideqWg5hNFU+uF3DAcjE/wUiZcs5PJuwDV7lC8DvvXI27cctOMR9XuzieJcBkO9GJCAh1ohRP+RCYJAlgOgexiK64RwoAnwQ2MM23CZuuwj9/RfIv7gL/N4pbVdXdyjQpUsnbNq4ET/9tB7tO6TPsX3VtXmpbUOsO+hB12BfAY8BEDbX45PxcxHz+DlWzx2LoDy5OHX4ZECmjemLRnXT3nRkzoDQJHT7QebRJWgOCLwnpg1fdPWD5oCIPwTr+BU1/jhtPUTq0zYpyCsgE0JDsDo6pTu56xCszGIum6TlMiC9J3pZZUCMj2gIlq3gozkgTumSsj6pRwBIXEIShn05F8nJqVj83UgzfDDPmeaAnNu7FF5eaW90Gncehe7tG5nngHxQvzr6dmnGfSfVHBDTTrmhRYHgAtZvBVJTgJuXDMhXAOg6moZgyabXEYAQgDgxWJ09CX3FHh/cfmR9P+vZKBXhBbKfPSYAIQCRslsRgDiuLgGI45p5eg23B5Ck5FR0GjCZ28Nj1uQhyBXgx/lcqVQiLDQf2PcRTT7G6MGd0cXGKlhLftqBTTsOcqtg+fv5YMDomZKugmUvIPOGKtBtjPUbRXv16HsnKUAAQgDipNBjp3U2gOw65YW/rloP1RnYLAUF82V/GBYBiHMBhE9ID/reG9h5AZqvd0FRJj9UdWzPAdEtP8aZ8zvinI0IbV0LAQgfD1uWIQBxXDNPr+H2APLoyQuwVa8yH2w/kMNb5nEfsz1C2MRz0/Hlpx+hc+sG3J9s3gibE3Lor/Pc3xXLhWPetE8QGpI27l2sIVimDAhbItTbxzosDQYgMQ6UAZFbjyUAIQBxYsw6G0BuPVJi5R7LG1qBvEYMai5s8Q4CEAIQKbsVAYjj6hKAOK6Zp9dwewDh62C93oCYJ88RGhxkHoqVsW5sfCK0Wp15A0LTd2IByOFtepyL1KNoWQXCSlivBJKcAFw8ZgBlQPh61EXKEYAQgDgxFJ0NIOzSGYRcvatCzAslyhfV441SOvgJHEVKAOIcAMkcys8eGrHuey3yFVSg6+fWmXn9dsqAqGp6xipYBCBOvNHL9NQEIAIdRwAiUEB3r04AQgDixBh3BQCR4vIJQAhApIgrk03KgDiuLgGI45p5eg0CEIERQAAiUEB3r04AQgDixBgnAKGNCKUMP8qA2N4HRP/HZRijX8J7ZntQBiTrCCwUnDYnlw7PVIAARKDfCUAECuju1QlACECcGOMEIAQgUoYfAQgBiCm+KAMiZU9zT9sEIAL9SgAiUEB3r04AQgDixBgnACEAkTL8CEAIQAhApOxh7m2bAESgfwlABAro7tUJQAhAnBjjBCAEIFKGnzsCyIk/dDgbaYBWA7xZV4Wq9VXwz52uIm1EaDuiKAMiZU9zT9sEIAL9SgAiUEB3r04AQgDixBgnACEAkTL83BFA5o3QWEjWcYQXQoukr0xJAEIAImWf8iTbBCACvU0AIlBAd69OAEIA4sQYJwAhAJEy/NwRQFgGJONRqbbaMgPyOB4prRcAvl5Q1S9nU179qVvA00T4zO4IZfUSUrrAZWxTBsRlXCGbhhCACHQVAYhAAd29OgEIAYgTY5wAhABEyvCzCyC/X4Rm2k4oigRBWamI7Yf1XZe4z/2OjZayqaLZNmdAeFikVbBeLRKtgsUjiNy4CAGIQOcSgAgU0N2rE4AQgDgxxglACECkDD+7APLfRoR82uB35HNAab0JL5+6OVnGaMqAsJMWyDA5JGMjXiQCGj1lQOw4hgAkJyPX9c5FACLQJwQgAgV09+oEIAQgToxxAhACECnDzy6A/JcBgZ8XkDuLPR8exckzA+LvDXUnWgXLFF80BEvKnuaetglABPqVAESggO5enQCEAMSJMU4AQgAiZfjZBZD/MiCKMvmhqlPGZlN0y4+lAYhcMiCP4pDSZiFAAGLhTwIQKXuae9omABHoVwIQgQK6e3UCEAIQJ8Y4AQgBiJThRwBCGRDKgEjZw9zbNgGIQP8SgAgU0N2rE4AQgDgxxglACECkDD8CEAIQAhApe5h72yYAEehfAhCBArp7dQIQAhAnxjgBCAGIlOFHAEIAQgAiZQ9zb9sEIAL9SwAiUEB3r04AQgDixBgnACEAkTL8CEAIQAhApOxh7m2bAESgfwlABAro7tUJQAhAnBjjBCAEIFKGHwEIAQgBiJQ9zL1tE4AI9C8BiEAB3b06AQgBiBNjnACEAETK8CMAIQAhAJGyh7m3bQIQgf4lABEooLtXJwAhAHFijBOAEIBIGX4EIAQgBCBS9jD3tk0AItC/BCACBXT36gQgBCASxvj9fw2IjjJyZyhUSoEipZUWZyMAIQCRMPxAAEIAQgAiZQ9zb9sEIAL9SwAiUEB3r04AQgAiUYyfPajHka16C+vVG6tQo7HK/BkBCAGIROHHmSUAIQAhAJGyh7m3bQIQgf4lABEooLtXJwAhAJEoxldO0SD+haXx3PkU6PGlFwHIydswXIqG12ACEInCjwCEdkK3CC3aCV3KnuaetglABPqVAESggO5enQCEAESiGJ83QmPT8tCZ3gQgBCASRZ2lWcqAUAaEMiA50tXc8iQEIALdSgAiUEB3r04AQgAiUYyvm6HFs+i0+R+mI7iQAl0+owyIgQBEoqgjADE+ikNKm4UAZUAoA5Ijvcx9T0IAItC3YgEIG8vNxnTnCQYC8lg3SqcFHt8D8oYC3cakv+EU2HyqLrUCBCAEIBLFWNRFA3au0FlYb9pLjVKV0iei0xwQGoIlUfhxZikDQhkQyoBI2cPc2zYBiED/ig0g9ppjAhBjdCyMMbH2ikORyweKsgXslqMCEilAAEIAIlFoMbNxz4148iAtC5K/sAJsDkjGgwCEAETC8CMA6UQAQgAiZQ9zb9sEIAL9KxaA3L1mxMNb6SvaPH0I3LxoQHAYLN5o+uVSovI7SmiXHYFu2VG7rVe+WRQ+87vYLUcFJFKAAIQARKLQ4mOWAIQAhE+cZLcMZUAIQAhAstt7qB4BiMAYEAtAMjfj6mkD9q7TodxbSjTqqrZqpQlAWIYD7F/mQ6OH8XkiCEAEOlhodQIQAhChMSSgPgEIAYiA8LFb1S6A/H4Rmmk7oSgSBGWlIjbt6Xdd4j73Ozba7vlcoQDNAbHtBVoFyxWiU15tIAAR6C9nAwgDDGXV4lZXwYZo6XddJAAR6F/B1QlACEAEB1H2DRCAEIBkP3rs1+QLIPYtEYDw0ciVyxCAuLJ3XLNtHgUgBoMRRqMRKpXlbsHMNey7x89eICRfHqhV6Rt5mdwWn5AEnV6PvHkCLTxJAOKage0yrSIAIQBxYjASgBCASBl+9gDEcPwmNGv+MjdBkayB4dojwM8binKWcxN9F8hjqDBlQCgDImWf8iTbHgMgDDwm/bCS8+3kz3pZ+Pjg8fP47KuFSEpO4T6fOLInOrSox/2ffTZ66mLsP3qW+7tyhVKYN3UYByrsIADxpO6SjWslACEAyUbYiFWFAIQARKxYsmXHHoBkrmO4FoPUXqugKFMAvqt6Stk0yWwTgBCASBZcHmbYIwBkd+RJTJ29Bs9fxqNd87oWAJKcosG7bYZhSO826Nq2ISKPncMn4+dh9/rvUSQsP5au+x0bt0dizbxx8PP1xsAxsxBeLAxTPu9NAOJhnSVbl0sAQgCSrcARpxIBCAGIOJFk2woBCE1CN0UGDcGSsqe5p22PAJCk5FTEJSRi1v82wtfH2wJAWPZj0BezcHbPEnh7p23g1bTbaA5GurZ9H+36TUTjehHo17U59x2DmRGTFuDSgRVQKBSUAXHPfiHeVRGAEICIF00OWyIAIQBxOGgcqEAAQgBCAOJAh6GiFgp4BICYrvirWauh1+stAOSX7ZFY+fMu7Fz7rVmYoePmoETRMIwc0AERTQZg6ug+HISw4/L122jffxKObZ+PPIEBBCDUoV6tAAEIAYgT+wgBCAGIlOFHAEIAQgAiZQ9zb9seDyBsiNUfB05i05LJZk+z+SC5/P0wcWQPVKzfCwu+Ho66tapw30fdfoCWPcdh388/IKxAMF4kaCSJkH9O6PH7ag0qVFeheQ/rnc+TFx9C8v+OQP1WMXi9Zb0Klj46FpodF6CuWgy5l3STpI1klIcCWj2e1/wWUCrg2/dtmxW0B65Bf+MJAia3gE/zSjyMOr9IXL+10J25C+/mlaAslDYfKuOhv/4Y2sjr8G5aEbmmtHR+g3m0IHnFMST/GAnVG0XgVb2EVQ1jsgapa05CEeSPvH9+ysOi84vo/nmIuO4roAwJgHfbN202KHXzWRifJSLPuj5QZZoY7PwrsN2CF/VmwhifAp/uNaDwTctcZzx0x29Bd/EB/Ie9B98eNV31MizalTDmN2j2XoFXg3JQlcpv1WbDvRfQ7PoHXjXCEbigs0tc09NoI5ZPS0FwmAJ9vvS12ybd1RjEdV0OVdkCyLO+j93yrljAEBOLl83mA/4+8O2W9mIy86H5/RIMD14i17yO8K5dyhUvQ/Q29e7RFVt+3YRlK9eizYftednPm8v62YZXRSrkFgp4PIDwyYBMG9MXjeqmvenInAFJTk3fPFDMiLhwXIctK1JQqaYabXpb39jjFx5E/MJD8K5WHD4R1g9LugcvkbztPPd9yPLuYjaNbDmigFaP6LemcwCSq/87Nmum7r8G7fXHCJraCv4tKzti3Wlln/ZeDc3pO/BrURmqwtYAor32CKkHrsOveSXknd7aae105MTxS48gfu4BeL1ZBD41wq0fAJM1SFp1Asq8/ih4cKQjpp1WVnspGk+6LIMqJBf82tkGkKSNZ2B4loj8v/SDV/mCTmurIyeOeft7GOJTENCzpk0A0Ry7Cc2FB8g9vAFy9artiGmnlX0xajOSd1+Gb8PyUJe2BhD9vRdI/v0SfGqGI/h/rvFS6fEDAxZNTkL+QkoMnORvVzvNlYd42nEpvMoVRP6N/eyWd8UC+oexeNR4LhQBPgj4qLrNJibvuAT9/RfIt7ALfN/2DAD5qFtnbN60EavXrEO79h14uc7Px3rFUV4VqZBbKODxAGKaA3Ju71J4eaVt+Ne48yh0b9/IPAfkg/rV0bdLM+47mgPiFnGfcxfhpkOwUgatg/HcPSCfP/Bfv7EQNUULxCZD1eR1eI9Pmz/l6od29XHoFh2ConJhqKrZ2FsnWQP9+tNAkD/8dg519cvh2kdDsGgIlpSBSkOwaAiWKb5oErqUPc09bXsEgOj1BhgMBkydswY6nR6TRvaESqWCUqkAm6Ae0eRjjB7cGV1srIK15Kcd2LTjILcKlr+fDwaMnkmrYEnUF9iQCuONx7ysK6sW41XO6YXcFEBSB6+D4ew9u/KqGr9Oc0DsqiRdAQIQAhDpogsgACEAIQCRsoe5t22PAJBfth3A5JmrLDzJltFt2/Rd7jO2xwebeG46vvz0I3Ru3YD7MzEphdsj5NBf57m/K5YLx7xpnyA0JIj7m/YBEa+D6M/chWbIel4G/Y6N5lXO6YXcFEBMGRAVG6qUL8BKZuODFzBceCCrDIhu9QloF0UCAT5ALh+ra1IYjTA+jufmgPhSBsSpXSul0RwYE1Kg7hIB2JgDYjh5G4ZL0fAaTAAipaMIQAhACECk7GHubdsjAISPC1mWJObJc4QGB5mHYmWsFxufCK1WZ96A0PQdAQgfdfmVMQGIwksFBFs/1DIrxpg4zhgBCD9NpSplyoCwIVaKMOs5IIYbj2E4/C/kmAGxqxkNwbIrkdQFCEA6Si0xL/sEIAQgBCC8ugoVsqEAAYjAsCAAEShghupmACmYG6pmtidj65YdIQART/JsW3JHADFlQBQlQ6AsZ2MytkYH/Z9XKQOS7agRryIBCAGIeNHkmCXaCd22XjQHxLE4otIAAYjAKCAAESggAQgMB6/DEPUUXuObQd2koniCSmjJHQGEJqH3hKJsAQmjRjzTBCAEIOJFk2OWCEAIQByLGCqdlQIEIAJjgwBEoIAEIAQg4oWQIEvuDCBQZz2sEc8SAJ0Bvqt6QVEmVJCGOVWZAMT5APLonhGRG3V4fN8ItRdQrJwSzXqnrSSZ1WG4FoPUXqugKFMAvqt65lS4iHoeAhACEFEDyoONEYAIdD4BiEABCUAIQMQLIUGW3BpAeCjju5IyIDxkkqyIZvxWboifsl5ZKEuGWJ3HeP8l9HsuQxlRAj5znA8gd68ZsXWx1txOvwCg75RXbyxHACJZ+DjdMA3BcroLZNcAAhCBLiMAESggAQgBiHghJMiSWwNIbl+o3i5tUx/9kRtAfCplQARFj/DKcgOQ1CSA7YRuOpRqIKyE4pVCEIAIjxNXtUAA4qqecd12EYAI9A0BiEABbQAIW9ZVVdN6J2pWVL/zEleDVsEST/fsWKI5ILQRYXbiRqw6piFY9uzRMrz2FMrZ7wlAclbvnDwbAUhOqu0e5yIAEehHAhCBAtoCEB4mCUB4iCRhEQIQAhAJw8uuaQIQ5w/BsuskGwUIQLKjmjzqEIDIw0+u1EoCEIHeIAARKKANAKF9QMTTVCpLBCAEIFLFFh+7NAmdAIRPnEhRhiah21aVAESKaHNvmwQgAv1LACJQQFsAQvuAiCeqRJYIQAhAJAotXmYJQAhAeAWKBIUIQAhAJAgrjzRJACLQ7QQgAgUkAJHlJPSUQetgPHcPqhrhYHN2Mh/GBy9guPAAbKd07/HNxQsSCS258yR0RXAAVK2q2FRPv+UcjM+TQKtgSRhcPEzLbRI6j0uyKkJDsLKjmjzqUAZEHn5ypVYSgAj0BgGIQAEJQGQNIPa8TwBiTyFpvzdciUFqn1UgAJFWZzGsE4CIoaL0NigDQhkQ6aPMM85AACLQzwQgAgX0FADhIZOcdkLXzNoHw43H5qsyPngJPIkHCgVBERpo/lxdsyTU3WvyuHrnF6EMCO0D4swoJABxpvr8z00AQgDCP1qo5KsUIAARGB8EIPwFfHLfgFv/pK0bXz5Cidz5LNeM15+5C82Q9VC44xwQHjLJCUAyX4523n7o1p+C15D6UHepzuNqXa8IAQgBiDOjkgDEmerzPzcBCAEI/2ihkgQgEsYAAQg/cU/s1uPkbr1F4aa91ChVSWn+zK0BRKmAumctm2IZDl6HIeopCED4xZJUpQhACECkii0+dglA+Kjk/DIEIAQgzo9C92gBZUAE+pEAhJ+Ai8dqoEmxLFu4lAJtB3sRgBCA8AsiiUsRgBCASBxirzRPAOJM9fmfmwCEAIR/tFBJyoBIGAMEIPzEnTdCY1UwMC/Qc7y3FYDQTuj8NHWlUjQEy5W8kd4WmoReD+quNVzTOZlaZQIQxRtFoAwLsm7z0wToT92GsnoJ+MymZXid5VQzgPBogPfM9lDVLMmjpPyL0CpY8vdhTl8BZUAEKu7JAHLrkRJ3YtKGUJUvqkfBfGnzO2wdjmRA+LiEdkLno1LOlSEAyTmtHTkTAYj8AMSef5URJeAzhwDEnk5SfU8AYltZAhCpIs597RKACPStpwLIgQteiDyvtlCvUz0NXitqOc/DVODsQT2ObH31HBDj9UfQzPnTwqbh7D3ub+WbRS0+95nfRaDncqi6Vo/kujMAmgOSQ4Jn/zQ0BIuGYGU/eoTXNGVAkMcP8E0fmmq2rNEBL5IoAyJcatEtJDeZC8Qmw2/nUCDIX3T7cjBIACIHL7lWGwlABPrDUwHk6w1+SNFaileigAG9GqVmqShbBet+VFqWhE0+z7wKlq2KybW/5T6WTcYj80UQgAjsYTlXnQCEACTnos36TDQHxJnqCzs3AQhAACIshjyxNgGIQK97KoBMXONnpRx7afdFp2SBilpWJwARVU7JjNEQLMmkFWSYhmDJbwiWsl5ZKEuGWPndeP8l9Hsug4ZgCeoSklQmACEAkSSw3NwoAYhAB3sqgGQnA5IdqQlAsqNaztdxBwDRrT4B7aJIKAoEAmF5rEXUGWC8FA02RMZv17CcFzkbZ3RXAEluPBuIT4WiUiFAlb6Ut1mi6FgYH8fDa8h7UHeJyIZyOV/FPAm9RDAQZP2CB/EpMEY9hTKiOHzmdMr5BopwRsO1GKT2WgVFmQLwXdVTBIuuYYIAhADENSJRXq0gABHoL08FkLNRKmw5lr6CFZPxVXNAsiuz7AEEgOkaUCC3bRlik8HGs3mPbw5Vk9ezK5VT67kTgNgTUhHkD1821lsGh7sDiD0XyBFA7F0TAYg9hXL+ewIQApCcjzr5n5EARKAPPRVAmGwxzxW49UgFX28j2PyPvLmyXgXLUZlNmxJmrCfXeSBmALEjAgGIo1EibnnDhfvQn7zFGTXeeAz94X/NJ1Dk9YeqzRvc3wo/H6i7ymO3d3cFEP2aEzCkpi/trdt1GXj4EqoPKkBRKH0JW1WNklBWKixuoEhkzXDgGvRRj83WDRcewHD6DpQVC0NZvbj5c2XhfLJ9UUEZEImCxwXM0hwQF3CCzJpAACLQYZ4MIAKle2V1dwIQw5m0lbxMR+q0ndzDkvfYphYPS4oS+aDIFyClrJLZdocMSEZxDMdvQrPmr/SHviJBnL/kdrgrgGT2Q+qwn2E4fRs+sztAWT1cbm6y2V7d2hPQLoiEukt1eA2p7xbXRADiFm60eREEIO7rW6mujABEoLIEIAIF9MDqqR8thyHqCXxW9YKyTKhbKOBuAOIWTgFAACJfTxKAyMd3NASLhmDJJ1pdp6UEIAJ9QQAiUEAPrE4A4oFOd9IlmwAEahUQnEV27VkCoDPAd1UvKGQKui8nDQAAIABJREFUxJQBcVKAOXhayoA4KJiMilMGREbOcpGmEoAIdIQUAPLwthFnDuhx86IBwWFA1XpeKB+hsGipdtkR6JYd5TboU1ZNHx9sKmSMjoV+10Xue9ls2ifQF3KpTgAiF0/Jv51mAOFxKQQgPETKwSKUAclBsQWeijIglAERGEIeWZ0ARKDbpQCQMwcMOLpdZ25ZkTIKtBlouTMuAYhAxzmxursBiPH2M2iXHoF+/1Wo2r4Jr84RUBTO60SF6dRmBZI0MFx9lPZnbBJSx22xEMf7m7ZQ5PLlPlOWLwD4W65sJwcljVceQvP9HhiuxsBraH2oGr8u27lUGfUmAJFD9KW1kQCEAEQ+0eo6LSUAEegLKQCEZUDuXtWbW5YnWEUZEIF+cqXq7gYgmonboN97xSyxulMEvIa950qSU1uYAk8TkNxyvoUWbDlhtqywnI+UrkthvPXMfAneE1pwq2HJ+dDO3gfdL3+bL4FBlffE5nK+JK7tNARL9i60eQH/XDyPyePH4OiRgxjx+Th07tYThQrZX32uULCN/W7cUyK6KhsKEIDwDIv4hCTo9HrkzRNoUUMKAOHTJMqA8FHJNcu4G4DoVh6H7r/la5niXg1f4zIhdLieAplXZFNWLep6jXSwRZqpv8MQHZsOID1rQ1m9hINWXKs4AYhr+cNeazw9A9KuVWMcP3rYLNOkqd+h34Ah9mQDAYhdidy6AAGIHfcmJadg9NTF2H/0LFeycoVSmDd1GELype2U7GwAUZQOhbKs9UpKxmeJMJy4RXNAXLD7uhuAuKDE1CRSgBRwQQUoA+KCThGhSRPHjcI/ly6YLfXsMwDNW7axa5kAxK5Ebl2AAMSOe5eu+x0bt0dizbxx8PP1xsAxsxBeLAxTPu/tEgBiLzppEro9hXL2e93ak9CtOwHjyySoWr8B7241gAwbp+Vsa+hspAApQArknALuCCDapYfB7uvQ6KDuEgF1lxpuMQcpJ6KCACQnVHbdcxCA2PFNu34T0bheBPp1TRt/uzvyJEZMWoBLB1ZAoVA4PwOSywdg/zIfGj2MzxMpA+JifS+5yRwgNsXcKp85naCMsF7FzMWaTc0hBUgBUkCwAu4IIMm1v7XQxXd1byhK5xeslScYIADxBC9nfY0EIHb8H9FkAKaO7sNBCDsuX7+N9v0n4dj2+cgTGOB8ACmYB4pCacPBMh7GuBQY/31MAOJi/Zu9KTOmpJpb5dW0EmVAXMxH1BxSgBSQRgF3BBCWAcl4qNtWpQwIz/AhAOEplJsWIwB5hWONRiMq1u+FBV8PR91aVbiSUbcfoGXPcdj38w8IKxDstLB4Pu8AXvx40O75fSOKo/DaXnbLUQFSgBQgBUgBUkAqBZIir+Phx+vM5lXBAShxbJRUpyO7pAAp4OIKEIDYcRDLgEwb0xeN6lbjSmbOgDjLv8knbiP5v5WH2P9TTt0xN0VdKA8C277B/e1VOK/5/85qK52XFCAFSAFSwLMVIADxbP/T1ZMCmRUgALETE2wOyAf1q6Nvl2ZcSVeZA0KhTAqQAqQAKUAKkAKkgFwVoCFYcvWcOO0mALGj45KfdmDTjoPcKlj+fj4YMHqmS6yCJY77yQopQAqQAqQAKUAKkAI5rwABSM5r7kpnJACx443EpBR89tVCHPrrPFeyYrlwzJv2CUJDgri/nbUPiCsFEbWFFCAFSAFSgBQgBUgBRxQgAHFELfcrSwDC06ex8YnQanXmDQhN1QhAeApIxUgBUoAUIAVIAVKAFPhPAQIQzw4FAhCB/icAESggVScFSAFSgBQgBUgBj1OAAMTjXG5xwQQgAv1PACJQQKpOCpACpAApQAqQAh6nAAGIx7mcAERMlxOAiKkm2SIFSAFSgBQgBUgBT1CAAMQTvJz1NVIGRKD/CUAECkjVSQFSgBQgBUgBUsDjFCAA8TiXUwZETJcTgIipJtkiBUgBUoAUIAVIAU9QgADEE7xMGRDJvEwAIpm0ZJgUIAVIAVKAFCAF3FQBAhA3dSzPy6IhWDyFyqoYAYhAAak6KUAKkAKkAClACnicAgQgHudyiwsmABHofwIQgQJSdVKAFCAFSAFSgBTwOAUIQDzO5QQgYrqcAERMNckWKUAKkAKkAClACniCAgQgnuDlrK+RMiAC/U8AIlBAqk4KkAKkAClACpACHqcAAYjHuZwyIGK6nABETDXJFilACpACpAApQAp4ggIEIJ7gZcqAeLaX6epJAVKAFCAFSAFSgBQgBUgBF1GAhmC5iCOoGaQAKUAKkAKkAClACpACpIAnKEAA4glepmskBUgBUoAUIAVIAVKAFCAFXEQBAhAnOiI5RYMXL+NQMDQYSqXC4ZYYjUboDQaoVSqH62auwNoSn5CEfHkDRbHnSIPEOHdiUgriEpJQICRvtrR0pL1SldXp9Xj2PA5BeXLBx9tLqtMIssti7smzWOQO9Ievj7eFLYPBiOcv4+DlpUaewABB55GyMruGF7EJSEhMRoH8eV1W6+xqIIc4yu61OVrv2Ys4qJRKrk/J5WD+Y30sX1CgzdjUanV4+jwW+UOCcvxe/SoNX3UfZ33tRWw88gXlRoC/r1xcYdVOdu9g2vv4eCN3Ln+b18F+R5kP8wTmkt1v0V9nLnO/oeHFwmTrI2q4fBQgABHZV1qdHm807INVc75AtSrlzNZX/vwHdu0/gZ8XT+Q+GzpuDvYfPcv9n/3QtP6gDkYO6MD9/fxlPOq0HmrVsmUzP0fNqhXMn2/fcwyzlmzE/o2zzJ/df/gEjTuPQsVy4eZzsS+v3LiDdv0mola117F0xihz+d2RJzFz8UaweqajTo1KGNSjNSpXKMVLnffaD8ejJy/MZUsVL4SRAzqibq0q3I24SoM+5u/6dmmG4f3bc3//9fdlTJ+7FlF3os3ft2hUG6MGdkJySip3HaaDadTqg3fwSd928FKnA9fB4+fx7fx1uHP/EVf0t+VTUbZkEV7t5lPo6KlL6D9qBn5dNgXlShXlqrAfoX6jZiBfnkB8N34A95leb0C9Dz/hfPfnxpkomD+f2fz475bj152HzH+/W7MKPh/UyXyTv/vgEafD4RMXzWVqvPkahn/cAZXKh/NppuAyprjJbIi1deE3w7nr+nHFb9h78BT3f3YUL1IA4z/tzsXU8dP/YNj4eUhKTuG+i3ijPD4b2JGLQ2ccY6b/D6x/zJgwEE3eq2FuwoXLURg8drb5Gvz9fDF2WFe0aVKHi6Gm3UZbNZeVObVrEfd5yx5jLeKVfTa4Z2sM6tlakstk18CupV/X5vi0XzvzOX76dS+mz/2J+4x9xw57cZS5n7I6zD8shu1dtyQXB+DW3Ydo3v0LFAnLj93rv7c4zbfz12P1xt0Wn71ZsQzW/jjO4jN2Dxj0xSws+Ho4d89hx4OYpxgxcT4uXbtljscfJg5CcN7cUl0Kdw9l96w/1n2HooVCzeeZPHMVUlM1XBwOGD0zy/NvWjIZR05exOwlm8xlGteLwMQRPZEndxrQL9+wEz8s+sX8/dTRfbjYlfLIGDfsPtzw3WoYNbAjWL9gx6vu436+3ug6eCqu37xvbmKXNg0wZkhXqFRKZL43Mvvd2zcG+51QKBx/KSdEh6zuGcwmg44Zi37m7immg7X1w2Z18UnfD7m2su9+23UYJ85eyeC/6pg5aZCQZuVo3Y+GTscH9auja9uGOXpeOplnKkAAIrLfswKQFRt24Y8DJ81Q8OPy39CoXgSKFQ7lbuDsoWjDwgmo9FpJsLd277YZhkXfjuS+Nx2hIXnBbujsQaPfZzO4Hzz2BtcWgLA6K2aNQfU3y3PVR09bjB17j1sAyLrf/sS0OWsw6bOeaPRuBPz9fPDv7QdgnxctlB/9u7XgpQ77gWI/Go3rVeceQBlssQfu838u497QsTd27CGjd6cmaNe8HvfDc+bidbCb3aAerdC5TUP4+njh8vU7+H7BBowf0R1BuXNxP+ar545FaEgQrkfdx7Dxc/HZgI7o1akJ167IY+c43dgDWKvGbyNvnkDuzRTTSMyDnff5i3ismTeW+6FhIPnZVwtxYNNsrm3sOHn2KnoN/4aDyT5dmqFnhw/MTWA/solJyVzbmW/nLNuMm3eise/nmYhPTELDDiNRs+prGDWoEwcudx48wrL1O/FameLo0b6xmJeSpS3TwxOD04Kh6fDEHjJYjI2YNB//3nqAr8f2R8nihRAd8wTb9x5HWGg+dGz1HtibsydPX+LdWlWQkqLBV7NWgWVEGLzk9MGyYdWbDuAAqXiRghZtOH85Cjdu3sd771RFYC5/LFq9FYtWb8OZPUugVCoRHfPUorkbtu7HwePnsHPtt9znDECaNazF/UibDpbtkeoNuwlA2LmObZ/PZZbYPaZx58846DcBSGx8ot04Yv20c+sGaFjnLXPbWRYrJDjI7nVL5cMFq7Zi6x9HuHvZhkUTLYD7mx/X4V70Y3w+qLP59D4+XhZwfy3qHroNmcbddzICyKQZKxHz5Bkmf9abyyJ8/PkPKFWiEKZ/0U+qS8kSQFhbUjQaTBjeA4+ePOfOz8Br6JdzOZhi9zp2FC4Ygq17jnLwUqVCae7a+4z4Fn06N0PPjh/g8IkLHMDMnTIMdWtXwa4/T3Bwun311ygp4Rtr7v7erjEa1KmKuw8eY/x3y1C7WkUw+LF3Hy9RpCD3e9Dqg7dRqEAIjp2+xF0Du5dWrVSWAxB2bxw1qDP3O3H01EVMnb0GG/83CRXKlpDMV5kNv+qewb5r0eMLsGsZM7QrShYP40YLHDlxkXsBuHfDD7hwJYqLQ/byrGXjt2EwGPDPtdtY8tMOK2DOsYvKxokIQLIhGlXJtgIEINmWznZFvgCSuTa7yXdq9R730G8CkB2rv7aZCmVZBfZGZv+Rs1i6bodNAGFvMG7fi8H/vv+MexvYqNNnaN+8Hu7HPOEyIGy4Uq3mgzBmSBd81K6R1cWwdDrfB3nWdvYg1LLR25yd3ZGn8OW3y3B8x3zzEAEGE+zaPmz2Llem86ApCAsNtno7xDIJ7Ob96OkLq7eJn074kYMk9hDBshBt+4xHudLF8M3Y/iJ70dIceyh9v9Nn3Hnq1X6De1s8sEdrsDd5pmPijBVI1Wi5h949kae4TIzpYD+yrL3sB5sd7K1sx48nc298Gaht3B6JPRt+sNI7JVVjNcxJqgvN6u2t6XwRTQZgQPeW6NO5Ka8mmB6cTRDKq5JIhRhos6zY9xMGos+I73Dot7lZvvn+ZXsk5i3bjP2bZltk1lhT2INHvQ8/xYTh3cEyc+xgAMIeBts2TYtjqQ+m46qNu+Hn68O93Wdvhnf+eQKrfvmDG+rGPmMAPnfZZrtxlLmfZtV2W9ctxXWyPvFBl8+5uNq6+ygH3KMHp8MGA5CXcQlZ9u8nz16i44DJGNG/A1iWgWW7mB6me1tGINl/5Az3wH/pwArJ3qxn1YdMAJLxPsXAid2/Dm+Zx720yOpg944HD59g+azRYBmhU+eugmVKTAeLx3bN63IvgKQ6MscNi0cWf+zFl737OIvRjEfU7Qdo2XMctq6YhtLhhTkAyXhvZD5lfW7z0q9QvnQxqS7Jyu6r7hkMktf/to+7X5uyPiYDpt/Jzb8fwoTvl+PcvmVW9xExL4L1iWKFCyA2PgHHTv3DvVB49iIWK37exb2QYLHEPhvYo5U5K3Pwr/Pci4tte45xmg7p3QYsw84OBpRTZ68Gy/Sz3y429I/9lrPnB/ZbzDJu67f8ifiEZA5AvxjSlcvGsZdRDH6bNqiBtZv3cvA44uMO8Pb2wuLV27jhduy5gu9LTDE1IlvyUYAARGRfZQdATEM/TD+YJgB57+03kSd3Lm5IERt+lHlcPXsT//3CDTYBhMELyzr8sngSft93HAajkRuzeubSDQ5Azl66wb2xedXDGV9p2A9Utcrl8EbFMtyNcd2v+7ibUcahARkBxDQsa/ZXQ/D+u9Vsnibzj3lSciqadx+DwT3bcBBjGqbGNNLqdEhMSkWttyqgd+emkjy0L133Oxav2Y73332LG06wYdEEM1yxHyGWsWKpdjaUhOmecShY5h9ZNuxtxKQF+GvHAoycvAAlioZxw4CceZj0ZlDFxi6bjmJFQjmwZA947Ed6YI+WnK9LhxfhYDCrg/04sR+pjA9LOXV9A0b/gHKlimFYnw+5YXGDe7Xh4D7j8feF69i25yj3VpkNF2zWoKZV8xau3soNq9i2arrZ1+yBLyDAD2yYYaECwWj+fi3ugUCqwwQgQ3u35bJuB3+dg66Dp3DXxN4smwCEDRO0F0esn7K3zlUyDK1s8X5tq+yNreuW4vpYNqrLoCk4tm0+9h3+G+zhKuNLC/b3noOnuGGnLLvJslZvVS7LNYX1uZ6ffI06NSpzD1QMkE0AwuYb1Gg2kMsgs+Gk7Lj671182HeCKPe7rLTIqg/9eeRvqxclfADElOlq1qAWNzyXDc1iQx1Nw3hZO1h2lmUW2IskqY7MADJl1mow37F7IBte+6r7uKlNTJtfth3g/Nz0vZqcz9jB7o3Xo+5xv29smBobJcDAhL2syckhWK+6Z7C+xbK+r9L44ePnaNhhBPeCig3LKl+qKAoVDBHdJQPHzMKhv85zow2qvF4KlcqX5F5GqtUqbtTCvQePOdA2PUuwewR7RmCjBt6pXonL3rPMDLsvs99hdj9j83LYSwxvLzXGfbuUy7gxANm4IxLfzd/AZeZZpnvO0s0oVDCYy8BdvHITnQZ+xf1+t29Rj4uH+St+414iMOjQ6fQYNWUhsnqJKrowZFCWChCAiOw2RwGEvW3sNmQqcgX4Y+XsMdzwJPYDOmfpJrAhVyzVy8aVhuTLg58XTeTeMJiOVwEIG67BbgjsIZCNSWVvb7btPmoGENNDsOmNIDsne4tqOtgPO/vH52A/UOwmxh7EdHodd0429GrWV0O4BzV2ZASQx09fon67T7FuwXiLh6GM5zL9mLO3LmqVGqfOXUHEG69h6uje3Fso05wWltWpHVERcfGJ3BtC9iDJhpSJfWg0WrTu/SU3T4A9AGSc27D30GmM/Xopjm37kXsrzebasJu9acy+6Ue2WcOauP/wKdj4fTZEi93YmS4dWtbnnVkQ+7oyPiCwtjC9AwPSJ1eWKVmEaysb4rN20x6s/GW3eZ4HgxUGhJmHH5myH/9v797jbarzP45/mCmEkI7Lj5p007hEFykmuoh0cUkU4YSKht9xC+Uy5qRcMi4xKdFVkTu/UdSExK+pNEpS/FQmNZmIcTfuv8f723z3rL3tc/Y+2XuFXus/zt57rfXc3/1d6/P9fj7fpUBX9SFhbn4EVRdYXQyVL//+h59F3bTpeBRMvbrwXftkzZduBP6u226IOkxd1Ove1tVdbGXiN/2m8v8ivx05YqZRdbWHmROz0xaE+ABEAwlN2vWzcmUzXPqeUsIyuw6JBCDJtCP9TjWIEbwx6pfVOurfOZ13Or5D1bAoTUrG27bvstqNu7gZ29o1qrjd6dz/9s0/XAqVZg0XLl3hgvwb6tRwwZg2BR1awCMYgOj/daO29osNpsDtlF/+0t54e7l7fyoGXHKyCPZZwd/QByvX2iVVL4iayUkmANGsqma7Xp001KV6+oBNKY8KypSKq5kIpQSmOwDRoIN+T6vWrDddO8Y+kmVVLjo3YT/urdRfawDnrx+vtbpXVbeBPTJdX6m+UWlX1StfoOo60428rh/D+t3nAs4wtkR9RuxvS+evAQy/qZ5FbVDXWaVWKy1Nm2YUlD6ooCRVm9q1ahGD9WD6bM0sKYV589ZtpnTve+66xaXvKgBZtnxVpO7T11wp6Fe6dduswVFBQjAFS7NbmjHRd6VNwWPXAWPdgIHangIQf/+gFEj9BtVPVa74Q+pc0/b93cxcumuUUmXL54QvQACSYnNNW158fXt7ZkRvu/Ky/xSMKxdUxZLBAkqN4nUdMMb+sWmrq3XIKY/cdxpTxg2IKgxPFIBs37HbGt7V26WPaPp/3PNzIgGIv5j5OgYFQsqF1zZnwVJr3ay+dWyTfA1IMAVLIyvK861wVhnr17WN+8x4MyC6mdBITrzNX8w1MqOgTMcWLCj2AUgwhUHpTEPGTrb3X3syLaNnk2a84dJcNCIe3DQK+eGqda44U9t7Kz51geNbMx+PFFr6i6zqKXQx9ze1Gl3Thco7pbg5Jv1xiVKw/AepruObjZvcxVajYxopC14MfdG+LloKrMLeXp71pivo9/tWHr1GjXXDLufYTTcSugjHFg5r9F3fqUZ5cxqJVdpBg1a9rE2z+pG6pFSfrw9AFFD5wG5Q7/YuBUwzmMEZkETtKJkUrGTOOxXnKLtajbq42oVK/75hUVCo30VOKZWaVdu2fac93KuDu/FV6lHhfxdCKy1IN3qarVPhtn5/mrVUP1e0cCE3S6pFHk6UFCz11U88P+eouhi15SlzF9qOnXvczaH6JKWtpTsFSwNM+q4UvNave7mrz/Az2bn147FtxdcqDejexn1XsbPDer2fgfN1V6lob7l9RqI+Q7MjqsvxfbQC2Y9Wf+5SmxWMxKaZajDv/7782l6c/oZpcOov88bluGJWXs9NAcilVS+ILDyh9+s3q3agbIBfnVXGXlv4bqRPig1A/OCfFkrRwMygUZMiC2zos4IBiBbCCWYybPxui9W7o6dbkEUDcsEAxN/3BAfn1D/ddP2VUanKeT1fXn9yCxCApOH71YVeI2/ByF8pLLt3742smqQ85az+Y2zv3n02/rGeuRax+gI55QH73E0ddqIARKOdKqLVe7SsXjAA8XnSWsEjNk+zffdhVvPSSj86ANGx6Sbwyw0bIyMvsTUgqoEoXaqEG/0MbrqoHT502DZt2RZVA6IATikIPgjThazWrZ0j/9ZnaIpfzqsWPZeW5Q+VCztl9sKoAMSP3CrFx6+wo3PQaJ9mtLQaVLyLrD/nUU9Pd3Ug8fKLlXaWW5pTKptuogAkXk2Q6nz0Pp2nNj+rFsbKPDmdu2afMkoWjypmnvHqEpcmcH/bxke9zY/4a2BAKyxpU9Ci2oRkZnDUjuvWqu4WU0jHFgxAdNOum7OObRq5WYFgAJJMO0oUgOTlvI/1XP3KVVpBzG8bvt3kgiytOBaba6/X6PevgHH8Yz1c3nlwU3qI0uFuqXdV3Jlb9Wla/nXso12P9dBzfH8qakAU4I94aqqpNumFxx/MtRDbF4Cnu2A7t3aTqB8Pzth7ONXQ6dqowaV4feMbSz6w7gP/mPZ6Cn88ifoMzWoowH1z2oioNGg/eKEAZP/+g0f11f735K8DqWh4sQGIT9cO3hsoYKp5SSU3KJJbAKK+T99f8PcWDEA0g1H7iqpu8RRtCn7veWC4W3xFiykEAxC126rXtYvKDiAAScU3fnJ/BgFIGr5frSylkWBd7DQq+cFHa61Dz8dsWL+O7iKpG8s7O/2Qgzkqu4sVKVzIHYVW4VGupS7O/9q3z668rLIraBs9YaZLw/IdoIr2lGOpfFmtwvH65OGWL38+l/bkL4J+xZzg6QUDEP2/zw9VKpAu3JqB+fvG790SwZrWz8sMiF8FS8vnrl6z3hWo9e7c0k0Dx1sFSyt/yaT9nTdZ2+b1Xd3GZ+s2uItvcBUsPzKtc35oyASXRjH3uUfcSJw6WnV8ykH+fusO6/Xwk1a2dEn373Rs8QKQGfOWuHQ5P9vh93t3t6Eu6NNMQG4BiGpZFJxdUuV869Ollcvn1vS2igp/ilWwlAKj2ga/FSpUwC03fH2LHtbt3uZuVk+rR61c/YXzVy2Cbr5VRNx3yASXChJMnShRrEjcm8l0fD9azlk5zbF5x7ppnzN/mZvlmLNgmbuJuKxaRcufL5+NmjDD3fQumj7SnZc2tV3NSvrAKnKD/Pfv3NLZWgGrZIli9vri993qcpq99LUJqT6vYAAS+9nBACSZdpQoAMnpvFN9Tvq83oOecqlswdkOn8YxfMD9rrhVQVWj+rXs7PJlXDpVu27DXBF+vH4pNgVLo9CauVIfO+/P77gli2NX2Ur1eaUiAFFQr75e9StabclvmjlV/64R7BLFi7o0vN899qxLzUpnUKX959ZuEvXj6vvVr2vlteKnF3ZpjzpH/5uJXgXrgH397WYb9sfJdla5UvbE4G6p/oqO+rxk+oydu/faza37uL65f/e2VvHc8rb/wEHX52mgTQHI0y/Nc6ljmS0a2PnnlHOLqDw75TW3IMubU0dEllE+1hOKDUD8QKIGferXrWFK91N6ovrkRAGI0rqvuqWzm8Vu1bSeq+tQH+CL0BV4zZr/to3O7mKlM85wxepKkVPA+8ma9QQgx/pl8n4jAElDI9DofP+hEyPP+dAu1BlotRblimq1CnXqsZtWsFBKka8p8M9U0P/rouxTutTRNW4XvRa+T7PyF8F4076xAYimTVWIO/bZWVHP8VAqQ6e2jZN+BkXs8wUUdCk9IrP5jXbEjuT4HJDF73xoQ8dOjnoGidbK75vV2tUZxK6pr1WhMrOGuGeETB3/e7f6h1bGUjqWNs306JkG6ljTscULQDRipOBBU9XBTYGJalL+d+5YGzR6UtRKL7HHtm79N/bo4y+5FW78pmLhPl1ahvYcjdyeAzL20SzLHvGCC3h9m9RxKrjUM12Uy/3wqBdt6txFR7GHORui1WpUlxFb+K6ZuFvbPuRuQNVWskc8H3VjN/jBeyO/LZ+bH5wRCQYgCiyDz7xJd/pLsgGIjjFRO8rtRjK38071b8kHGsFVqvw+FJjohk/LN2t01j/HQ39vcuNvbED3tnEXmYgNQHwqoN6nOrTsXu0iM1ypPh//eYmeAxJcAjinGhD1ecFnMvnP9imE3kQzRE0b/sYtoJDuh5YmClxz68e1gpee0eKfHaTzCf5m4j0H5Ia6Naxrh2Ypu2nP7ftOps/Qs5j0nYwcP80FFH5TUHhbwzrWuV0Tt5S+ZuiC7VWLx/yuR2ZK250CEA12KBBsVtWVAAAKqUlEQVT3m5Zs17H5tq7VGLUSllbre37aAntn+Seutkqbr3fRCmY6fr8Uv/6m49W9yz2tbnFpU/qd9h0y0d2PaNN1XbU/551TztUCaRDVpzTGmwHRtVEDCToWNgTiCRCApLFdKHVKU6Q/5mnL/mnGOjyNcqV7RRDlTGvU8Kd4uq57ivnO3S5wiF22MZmvR6OCWgUkt+Usk/mcn/o1yqvVtLhmouKloPzUx+efIL7/wAHLOKO4q285ETf/21JwXKpkiTyl68lAN1O6OGu2TaPSx9t2vLejvHipX9KSnhklf3gGUrKbvmPlrCst8nj8LSV7HrGvU8rn3n37rUxGibRfE/J6jDn14/rNaDllXV/KlCqZ1mVq83rMeX29Bu2UHlzktIKRGdPgZ+jmX/2D6o58ZkNe9/FjXu/sd+1xGRR53dSXaZld3afE2xSU6NlOOf09r/vj9Qh4AQIQ2gICCCCAAAIIIIAAAgiEJkAAEho1O0IAAQQQQAABBBBAAAECENoAAggggAACCCCAAAIIhCZAABIaNTtCAAEEEEAAAQQQQAABAhDaAAIIIIAAAggggAACCIQmQAASGjU7QgABBBBAAAEEEEAAAQIQ2gACCCCAAAIIIIAAAgiEJkAAEho1O0IAAQQQQAABBBBAAAECENoAAggggAACCCCAAAIIhCZAABIaNTtCAAEEEEAAAQQQQAABAhDaAAIIIIAAAggggAACCIQmQAASGjU7QgABBBBAAAEEEEAAAQIQ2gACCCCAAAIIIIAAAgiEJkAAEho1O0IAAQQQQAABBBBAAAECENoAAggggAACCCCAAAIIhCZAABIaNTtCAAEEzP61b799/OmX9uWGb23f/gNWrsyZVvOSX1vRIqclxTPtfxbbsuWrbMygLPf62H/H+5CPP/3C9h84aJdXq3jUn/fs3Wevv/W+Vbmogl1QoXxSx8CLEEAAAQQQOBYBApBj0eO9CCCAQB4EVqxaZw8Nftq+2bjZSmeUsAMHDtrWbTvdJzzSp4M1bXh1wk8b88xMm7NgmS2aPsq9Nvbf8T4ga8AY27xlu00ZN+CoP2/8bovVu6On9e7c0jKbN0i4f16AAAIIIIDAsQoQgByrIO9HAAEEkhDY9P02u/b2bvbrC35lwwd0sgpnl3Xv+m7zP10QkVGyuHW79/aEn5TqAOTw4SO2Y+duK1SogBU49ZSE++cFCCCAAAIIHKsAAcixCvJ+BBBAIAmB7JEvuHSp+S8Ps7PLlT7qHUqFOq1QATt06LC9NOvPNnPeEvviq2/twnPLW6e2ja3BNTXce1IdgCgl7J6ew+3+zMZWu0YVW/npFzZ83CvWqmk9m/anxbZ67d/s2lrVLbPFjVa54jmR4/7qm+/sD0++Yu+u+MwKFjjFrq55sT1w/512RvGiSWjwEgQQQACBn7MAAcjP+dvn3BFAIDSBRpl9rVzZDHtyaPdc9zly/DSbMmeRtWxynV1c6TxbsPh9m7/oPZs8boBVq3ReygMQBT41Gna0oX3vs1vr17Kl731snfqMdMfYtnkDO+u/StkL0xZY8dOL2NTxA93/+9mcS6teaC1uvca2bt9pE1+e5wKUp4b1DM2UHSGAAAIInJgCBCAn5vfGUSOAwAkkcPDQIat2fQd3Q9+nc8scj3zLP3dYnaZZ1qNjC+vQ8ib3Or33qls6W7Ob69iDXVqFFoDMnPiwXXT+2e4YFi5dYaojWTxjtJU6s7ibIZn2p7dsyazRdlqhgu41r8xdZINGvWhvzx5jJUucfgJ9OxwqAggggEDYAgQgYYuzPwQQ+FkK1GjYyW689gob1Lt9juf/wcq1ltl1iJUvmxG1KtZn676ya2pVtycGdwstAHlz2kgrW+oMd6yr1qy3Oztl2ytPDbSqF1Wwu7sNteUfrXH1LH7buWuPK66f/vTvrdKF/0nV+ll+2Zw0AggggECuAgQgNBAEEEAgBIHWXR613Xv22uxnH8lxb0vfW2Wd+oywvlmt7exypaJeV7xYUXfzn+oakJxSsIIBiAKg2+8dGAlA7uiYbfl/kd9+m9n4qHOpVvl8Oz3JJYVDYGcXCCCAAALHoQAByHH4pXBICCBw8glMeHmejZ4ww0Zld7H6dS+POkHNHqzfsNEUZDS8q7cN7JFpLRpdG/WaI0eOWL58+Y6LAKTf0In2l7+utlcnDbNCBU+NHKc/xpPv2+OMEEAAAQRSKUAAkkpNPgsBBBDIQUAPHWzavr9p9ajOdzex2ldUtUOHDtln6zbYUy/OtWY313XL8KrWQjUX2Q+0s8suvtBUF/L2uystf/787u8/dgZk7edfW4+OzaOOrmCBAlaj+kVxi9BzmwHxMyJ1rqxmndo2siKFC9mazzfYc6/Mt4l/6GXFixWhHSCAAAIIIJCjAAEIjQMBBBAISWDHrj029pmZNnn2wqg9Xlf7Evvt3U1cTcX2nbvdTImW7PWblrZVWlbD62ra2Gdn2ez5SyMPIoz9d7xT8UFN7N/0METNYlx+431HrYK1cPpIK5PxQw2IDzi0ClaVihXc/2m1rEdGT3J1H367umZVG5X931GzIiHRshsEEEAAgRNIgADkBPqyOFQEEDg5BJSqpCeT79u/30qfWcJOjfMAQK1+tfn7bVaw4KlWotjx+2wNBUy7du+1jDOKxT2Pk+Mb4ywQQAABBFIpQACSSk0+CwEEEEAAAQQQQAABBHIVIAChgSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEECAAoQ0ggAACCCCAAAIIIIBAaAIEIKFRsyMEEEAAAQQQQAABBBAgAKENIIAAAggggAACCCCAQGgCBCChUbMjBBBAAAEEEEAAAQQQIAChDSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEECAAoQ0ggAACCCCAAAIIIIBAaAIEIKFRsyMEEEAAAQQQQAABBBAgAKENIIAAAggggAACCCCAQGgCBCChUbMjBBBAAAEEEEAAAQQQIAChDSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEECAAoQ0ggAACCCCAAAIIIIBAaAIEIKFRsyMEEEAAAQQQQAABBBAgAKENIIAAAggggAACCCCAQGgCBCChUbMjBBBAAAEEEEAAAQQQIAChDSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEECAAoQ0ggAACCCCAAAIIIIBAaAIEIKFRsyMEEEAAAQQQQAABBBAgAKENIIAAAggggAACCCCAQGgCBCChUbMjBBBAAAEEEEAAAQQQIAChDSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEECAAoQ0ggAACCCCAAAIIIIBAaAIEIKFRsyMEEEAAAQQQQAABBBAgAKENIIAAAggggAACCCCAQGgCBCChUbMjBBBAAAEEEEAAAQQQIAChDSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEECAAoQ0ggAACCCCAAAIIIIBAaAIEIKFRsyMEEEAAAQQQQAABBBAgAKENIIAAAggggAACCCCAQGgCBCChUbMjBBBAAAEEEEAAAQQQIAChDSCAAAIIIIAAAggggEBoAgQgoVGzIwQQQAABBBBAAAEEEPh/Pwt5kevEvW8AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "method_color_map = {\n", " 'up': '#648FFF',\n", " 'down': '#DC267F', \n", " 'combined': '#785EF0'\n", "}\n", "fig1 = go.Figure()\n", "order = full_df.groupby(['Direction', 'Cell']).mean(numeric_only=True).sort_values('Rank').index.map(lambda x: x[1].split(':')[0]).unique()\n", "full_df['Cell'] = pd.Categorical(full_df['Cell'], order)\n", "full_df = full_df.sort_values(by=['Cell'])\n", "\n", "for d in ['up', 'combined', 'down']:\n", " d_df = full_df[full_df['Direction'] == d]\n", " fig1.add_trace(\n", " go.Box(\n", " x=d_df['Cell'],\n", " y=d_df['Rank'],\n", " name=d, \n", " marker_color=method_color_map[d]\n", " )\n", " )\n", "\n", "fig1.add_trace(\n", " go.Box(\n", " x=rand_df['Method'],\n", " y=rand_df['Rank'],\n", " name='random',\n", " marker_color='black'\n", " )\n", ")\n", "\n", "fig1.update_layout(\n", " width=800,\n", " boxmode='group',\n", " boxgap=0.1,\n", " xaxis={\n", " 'title': {'text': 'Cell Line'},\n", " },\n", " yaxis={\n", " 'title': {'text': 'Gene Set Rank'}\n", " },\n", " legend_title_text=\"Direction\"\n", ")\n", "fig1.show(\"png\")\n", "fig1.write_image(f'/Users/maayanlab/Documents/manuscripts/dex-benchmark/revised_figures/4_{ko_gene}_2_300dpi.png', scale=(800/300))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "ScatterEnv", "language": "python", "name": "scatterenv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "59b903cdca14fb863026e39f4185dd43265f1412df959e516078f4f22f35cec9" } } }, "nbformat": 4, "nbformat_minor": 2 }